84716 (Элементарное доказательство Великой теоремы Ферма)

2016-08-02СтудИзба

Описание файла

Документ из архива "Элементарное доказательство Великой теоремы Ферма", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "84716"

Текст из документа "84716"

Элементарное доказательство Великой теоремы Ферма

Виктор Сорокин

Идея предлагаемого вниманию читателя элементарного доказательства Великой теоремы Ферма исключительно проста: после разложения чисел a, b, c на пары слагаемых, затем группировки из них двух сумм U' и U'' и умножения равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 11) (k+3)-я цифра в числе a^n + b^n – c^n (где k – число нулей на конце числа a + b – c) не равна 0 (числа U' и U'' умножаются по-разному!). Для постижения доказательства нужно знать лишь формулу бинома Ньютона, простейшую формулировку малой теоремы Ферма (приводится), определение простого числа, сложение двух-трех чисел и умножение двузначного числа на 11. Вот, пожалуй, и ВСЁ! Самое главное (и трудное) – не запутаться в десятке цифр, обозначенных буквами. Формальное описание истории теоремы и библиография в русском тексте опущены.

Доказательство приводится в редакции от 1 июня 2005 года (с учетом дискуссии на мехматовском сайте).

В.С.

ИНСТРУМЕНТАРИЙ: [В квадратных скобках приводится поясняющая, не обязательная информация.]

Используемые обозначения:

Все числа записаны в системе счисления с простым основанием n > 10.

[Все случаи с составным n, кроме n = 2k (который сводится к случаю n = 4), сводятся к случаю

простого n с помощью простой подстановки. Случаи n = 3, 5 и 7 здесь не рассматриваются.]

ak – k-я цифра от конца в числе a (a1 – последняя цифра).

[Пример для a = 1043: 1043 = 1x53 + 0x52 + 4x51 + 3x50; a1 = 3, a2 = 4, a3 = 0, a4 = 1.]

a(k) – окончание (число) из k цифр числа a (a(1) = a1; 1043(3) = 043). Везде в тексте a1 № 0.

[Если все три числа a, b и c оканчиваются на ноль, следует разделить равенство 1° на nn.]

(ain)1 = ai и (ain - 1)1 = 1 (см. Малую теорему Ферма для ai № 0). (0.1°)

(n + 1)n = (10 + 1)n = 11n = …101 (см. Бином Ньютона для простого n).

Простое следствие из бинома Ньютона и малой теоремы Ферма для s № 1 [a1 № 0]:

если цифра as увеличивается/уменьшается на 0 < d < n,

то цифра ans+1 увеличивается/уменьшается на d (или d + n, или d – n). (0.2°)

[В отрицательных числах цифры считаются отрицательными.]

***

(1°) Допустим, что an + bn – cn = 0 .

Случай 1: (bc)1 ? 0.

(2°) Пусть u = a + b – c, где u(k) = 0, uk+1 ? 0, k > 0 [известно, что в 1° u > 0 и k > 0].

(3°) Умножим равенство 1° на число d1n (см. §§2 и 2a в Приложении) с целью превратить

цифру uk+1 в 5. После этой операции обозначения чисел не меняются

и равенство продолжает идти под тем же номером (1°).

Очевидно, что и в новом равенстве (1°) u = a + b – c, u(k) = 0, uk+1 = 5.

(1*°) И пусть a*n + b*n – c*n = 0, где знаком “*” обозначены записанные в каноническом виде числа в равенстве (1°) после умножения равенства (1°) на 11n .

(4°) Введем в указанной здесь очередности следующие числа: u, u' = a(k) + b(k) – c(k),

u'' = u – u' = (a – a(k)) + (b – b(k)) – (c – c(k)), v = (ak+2 + bk+2 – ck+2)1, u*' = a*(k) + b*(k) – c*(k),

u*'' = u* – u*' = (a* – a*(k)) + (b* – b*(k)) – (c* – c*(k)), 11u', 11u'', v* = (a*k+2 + b*k+2 – c*k+2)1,

и вычислим две последние значащие цифры в этих числах:

(3a°) uk+1 = (u'k+1 + u''k+1)1 = 5;

(5°) u'k+1 = (–1, 0 или 1) – так как – nk < a'(k) < nk, – nk < b'(k) < nk, – nk < c'(k) < nk

и числа a, b, c имеют различные знаки;

(6°) u''k+1 = (4, 5 или 6) (см. 3a° и 5°) [важно: 1 < u''k+1 < n – 1];

(7°) u'k+2 = 0 [всегда!] – так как \u'\ < 2nk ;

(8°) u''k+2 = uk+2 [всегда!];

(9°) u''k+2 = [v + (ak+1 + bk+1 – ck+1)2]1, где (ak+1 + bk+1 – ck+1)2 = (–1, 0 или 1);

(10°) v = [uk+2 – (a(k+1) + b(k+1) – c(k+1))k+2]1 [где (a(k+1) + b(k+1) – c(k+1))k+2 = (–1, 0 или 1)] =

= [uk+2 – (–1, 0 или 1)]1;

(11°) u*k+1 = uk+1 = 5 – т.к. u*k+1 и uk+1 – последние значащие цифры в числах u* и u;

(12°) u*'k+1 = u'k+1 – т.к. u*'k+1 и u'k+1 – последние значащие цифры в числах u*' и u';

(13°) u*''k+1 = (u*k+1 – u*'k+1)1 = (3 – u*'k+1)1 = (4, 5 или 6) [важно: 1 < u*''k+1 < n – 1];

(14°) (11u')k+2 = (u'k+2 + u'k+1)1 (затем – в результате приведения чисел к каноническому виду –

величина u'k+1 «уходит» в u*''k+2, поскольку u*'k+2 = 0);

(14a°) важно: числа (11u')(k+2) и u*'(k+2) отличаются только k+2-ми цифрами, а именно:

u*'k+2 = 0, но (11u')k+2 № 0 в общем случае;

(15°) (11u'')k+2 = (u''k+2 + u''k+1)1;

(16°) u*k+2 = (uk+2 + uk+1)1 = (u''k+2 + uk+1)1 = (u''k+2 + 5)1;

(16а°) к сведению: u*'k+2 = 0 (см. 7°);

(17°) u*''k+2 = (u*k+2 +1, u*k+2 или u*k+2 – 1)1 = (см. 9°) = (u''k+2 + 4, u''k+2 + 5 или u''k+2 + 6)1;

(18°) v* = [u*k+2 – (a*(k+1) + b*(k+1) – c*(k+1))k+2]1

[где u*k+2 = (uk+2 + uk+1)1 (см. 16°), а (a*(k+1) + b*(k+1) – c*(k+1))k+2 = (–1, 0 или 1) – см. 10°] =

= [(uk+2 + uk+1)1 – (–1, 0 или 1)]1.

(19°) Введем числа U' = (ak+1)n + (bk+1)n – (ck+1)n, U'' = (an + bn – cn) – U', U = U' + U'',

U*' = (a*k+1)n + (b*k+1)n – (c*k+1)n, U*'' = (a*n + b*n – c*n) – U*', U* = U*' + U*'';

(19а°) к сведению: U'(k+1) = U*'(k+1) = 0.

(20°) Лемма: U(k+2) = U'(k+2) = U''(k+2) = U*(k+2) = U*'(k+2) = U*''(k+2) = 0 [всегда!].

Действительно, из 1° мы имеем:

U = an + bn – cn =

= (a(k+1) + nk+1ak+2 + nk+2Pa)n + (b(k+1) + nk+1bk+2 + nk+2Pb)n – (c(k+1) + nk+1ck+2 + nk+2Pc)n =

= (a(k+1)n + b(k+1)n – c(k+1)n) + nk+2(ak+2a(k+1)n - 1 + bk+2b(k+1)n - 1 – ck+2c(k+1)n - 1) + nk+3P =

= U' + U'' = 0, где

U' = a(k+1)n + b(k+1)n – c(k+1)n,

(20a°) U'' = nk+2(ak+2a(k+1)n -1 + bk+2b(k+1)n -1 – ck+2c(k+1)n -1) + nk+3P,

где (ak+2a(k+1)n -1 + bk+2b(k+1)n -1 – ck+2c(k+1)n -1)1 = (см. 0.1°)=

(20b°) = (ak+2 + bk+2 – ck+2)1 = U''k+3 = v (см. 4°).

(21°) Следствие: (U'k+3 + U''k+3)1 = (U*'k+3 + U*''k+3)1 = 0.

(22°) Вычислим цифру (11nU')k+3:

[так как числа (11u')(k+2) и u*'(k+2) отличаются только k+2-ми цифрами на величину

(11u')k+2), то на эту величину будут отличаться и цифры (11nU')k+3 и U*'k+3, это означает,

что цифра (11nU')k+3 будет на (11u')k+2 превышать цифру U*'k+3 (см. 0.2°)]

(11nU')k+3 = U'k+3 = (U*'k+3 + (11u')k+2)1 = (U*'k+3 + u'k+1)1.

(23°) Откуда U*'k+3 = U' k+3 – u'k+1.

(24°) Вычислим цифру U*'' k+3 :

U*'' k+3 = v* = (uk+2 + uk+1)1 – (–1, 0 или 1) – см. (18°);

(25°) Наконец, вычислим цифру (U*'k+3 + U*''k+3)1:

(U*'k+3 + U*''k+3)1 = (U*'k+3 + U*''k+3 – U'k+3 – U''k+3)1 = (U*'k+3 – U'k+3 + U*''k+3 – U''k+3)1 =

(см. 23° и 24°) = (– u'k+1 + v* – v) = (см. 18° и 10°) =

= (– u'k+1 + [uk+2 + uk+1 – (–1, 0 или 1)] – [uk+2 – (–1, 0 или 1)])1 =

= (– u'k+1 + uk+1 + (–2, –1, 0, 1, или 2))1 = (см. 3a°) =

( u''k+1 + (–2, –1, 0, 1, или 2))1 = (см. 6°) = (2, 3, 4, 5, 6, 7 или 8) № 0,

что противоречит 21° и, следовательно, выражение 1° есть неравенство.

Случай 2 [доказывается аналогично, но намного проще]: b (или c) = ntb', где b1 = 0 и bt+1 = b'1 № 0.

(26°) Введем число u = c – a > 0, где u(nt – 1) = 0, а unt ? 0 (см. §1 в Приложении).

(27°) После умножения равенства 1° на число d1n (с целью превратить цифру unt в 5)

(см. §§2 и 2a в Приложении) обозначения чисел сохраняются.

(28°) Пусть: u' = a(nt – 1) – c(nt – 1), u'' = (a – a(nt – 1)) – (c – c(nt – 1)) (где, очевидно, u''nt = (ant – cnt)1);

U' = a(nt)n + bn – c(nt)n (где U'(nt + 1) = 0 – см. 1° и 26°), U'' = (an – a(nt)n) – (cn – c(nt)n),

U*' = a*(nt)n + b*n – c*(nt)n (где U*'(nt + 1) = 0), U*'' = (a*n – a*(nt)n) – (c*n – c*(nt)n),

v = ant+1 – cnt+1.

Вычисления, полностью аналогичные вычислениям в случае 1, показывают, что nt+2-я цифра в равенстве Ферма не равна нулю. Число b во всех расчетах (кроме самой последней операции и в п. 27°) можно проигнорировать, т.к. цифры bnnt+1 и bnnt+2 при умножении равенства 1° на 11n не меняются (т.к. 11n(3) = 101).

Таким образом, для простых n > 7 теорема доказана.

==================

ПРИЛОЖЕНИЕ

§1. Если числа a, b, c не имеют общих сомножителей и b1 = (c – a)1 = 0,

тогда из числа R = (cn – an)/(c – a) =

= cn –1 + cn –2a + cn –3a2 + … c2an - 3 + can - 2 + an - 1 =

= (cn –1 + an –1) + ca(cn –3 + an –3) + … + c(n –1)/2a(n –1)/2 =

= (cn –1 – 2c(n –1)/2a(n –1)/2 + an –1 + 2c(n –1)/2a(n –1)/2) + ca(cn –3 – 2c(n –3)/2a(n –3)/2 + an –3 + 2c(n –3)/2a(n –3)/2) +

+ … + c(n –1)/2a(n –1)/2 = (c – a)2P + nc(n –1)/2a(n –1)/2 следует, что:

c – a делится на n2, следовательно R делится на n и не делится на n2;

так как R > n, то число R имеет простой сомножитель r не равный n;

c – a не делится на r;

если b = ntb', где b'1 № 0, то число c – a делится на ntn – 1 и не делится ntn.

§2. Лемма. Все n цифр (a1di)1, где di = 0, 1, … n – 1, различны.

Действительно, допустив, что (a1d1*)1 = (a1d1**)1, мы находим: ((d1* – d1**)a1)1 = 0.

Откуда d1* = d1**. Следовательно, множества цифр a1 (здесь вместе с a1 = 0) и d1 совпадают.

[Пример для a1 = 2: 0: 2x0 = 0; 1: 2x3 = 11; 2: 2x1 = 2; 3: 2x4 = 13; 4: 2x2 = 4.

При составном n Лемма несправедлива: в базе 10 и (2х2)1 = 4, и (2х7)1 = 4.]

§2a. Следствие. Для любой цифры a1 № 0 cуществует такая цифра di, что (a1di)1 = 1.

[Пример для a1 = 1, 2, 3, 4: 1x1 = 1; 2x3 = 11; 3x2 = 11; 4x4 = 31.]

ВИКТОР СОРОКИН

e-mail: victor.sorokine@wanadoo.fr

4 ноября 2004, Франция

P.S. Доказательство для случаев n = 3, 5 , 7 аналогично, но в (3°) цифра uk+1 превращается не в 5, а в 1, и в (1*°) равенство (1°) умножается не на 11n, а на некоторое hn, где h – некоторое однозначное число.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://ref.com.ua

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее