23215 (Флюидодинамическая концепция формирования месторождений полезных ископаемых (металлических и углеводородных)), страница 2

2016-08-02СтудИзба

Описание файла

Документ из архива "Флюидодинамическая концепция формирования месторождений полезных ископаемых (металлических и углеводородных)", который расположен в категории "". Всё это находится в предмете "география" из 3 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "география" в общих файлах.

Онлайн просмотр документа "23215"

Текст 2 страницы из документа "23215"

Флюидодинамические системы (ФДС)

Глобальные факторы, определившие большое разнообразие флюидодинамических систем, обусловлены процессами, протекающими в верхней мантии и нижних горизонтах земной коры. Выделяются тектонически активные зоны и области, где отмечается аномально высокий тепловой поток и выход мантийного материала в поверхностные части коры (срединно-океанические хребты, зоны субдукции, рифтовые системы, активные границы литосферных плит), и стабильные платформы. Для последних характерны медленные и длительные (до 300-1500 млн. лет) поднятия и погружения коры (Е.В. Артюшков, 1993). Прогибания вызваны уплотнением нижней коры за счет фазового перехода габбро в гранатовые гранулиты. Поднятия происходят при попадании в структурные ловушки в подошве литосферы аномальной магмы, из которой выплавляются дополнительные порции бальзатов.

Наиболее мощно процессы массопереноса во флюидных потоках осуществляются в зонах долгоживущих глубинных разломов, маркирующих борта региональных континентальных прогибов и поднятий и рифтогенных структур. В последние годы выявляется все большая роль флюидных систем в образовании и преобразовании земной коры и локализации в ее пределах разнообразных типов полезных ископаемых. Области функционирования таких систем образуют сферические зоны в составе земной коры, различающиеся по термодинамическим параметрам. Наиболее продуктивна верхняя флюидосфера, которую часто называют рудосферой, имеющая мощность 5-10 км. Именно в ней сконцентрировано более 90% всех типов и видов полезных ископаемых.

В непрерывных геологических структурных комплексах рудо- и нефтегазоносные образования занимают дискретное, вполне закономерное положение. Они являются структурно-вещественными аномалиями, возникающими при следующих условиях:

активное участие минерализованных флюидных фаз в структурообразующих процессах;

существование оптимального режима деформирования (скорость деформирования 10-10 - 100 с-1, девиатор напряжений 30-60 Мпа, общие РТ-условия: Р=0, 1-50 Мпа, Т=10-5000С) в течение короткого приода времени (103-105 лет);

возникновение и развитие флюидных систем и локализация в них месторождений, которая сопровождается широкой гаммой динамических эффектов (сейсмоэлектрических, сейсмомагнитных, термоакустических, вибромиграционных и др.);

наличие высокоградиентного поля напряжений, которое направляет, фокусирует флюидные минерализованные потоки и создает геодинамические барьеры рудоотложения.

Чем ближе к дневной поверхности, тем более высока скорость формирования продуктивных структур, тем короче жизнь структурообразующих систем, тем выше девиатор напряжений и ниже общие РТ-условия. По мере перехода от мезозональных к эпизональным уровням структурообразования возрастает роль хрупких деформаций, а пластические деформации осуществляются с помощью особого механизма - гидропластического течения.

Рудо- и нефтегазоносные структуры, более чем какой-либо другой параметр геологической системы, участвуют в процессе перемещения и отложения минерального вещества. Их формирование сопряжено во времени и пространстве с анизотропной высокоградиентной системой массопереноса флюидных компонентов в тектонически активных зонах и центрах (рудно-магматических, вулканогенно-рудных, гидротермальной деятельности, очагах нефтегазообразования в осадочных бассейнах и т.д.), где сопряженно развиваются тектонические деформации, формируется минерализованная флюидная система и активно проявляются динамические эффекты.

Скорость деформирования пропорциональна величине девиаторного напряжения и связана с наличием или отсутствием флюидной фазы. В процессе деформирования создается система флюидопроводников. Наличие высокого градиента давления способствует повышению скорости фильтрации (вынужденная конвекция).

Таким образом, важнейшими условиями возникновения эндогенных месторождений являются: проницаемость среды, наличие термальной флюидной фазы, существование анизотропного поля напряжений и высокий градиент падения главных тангенциальных напряжений. В полной мере такие условия реализуются в обстановке регионального сжатия, при сдвиговых деформациях. Области растяжения являются локальными зонами, где происходит падение напряжений и разгрузка минерального вещества. Продуктивные структурные парагенезисы формируются при участии интенсивных динамических эффектов, которые проявляются только в жестких контактных системах при наличии прочных связей, в зонах сжатия и уплотнения.

Гидравлическая (диапировая) геодинамика

Роль флюидных систем в структурообразовании настолько велика, что выделилось специальное направление в геологии - гидравлическая (диапировая) тектоника (геодинамика). Она рассматривает формы, пространственное положение и происхождение структурных парагенезисов, объединяющих пластические и хрупкие деформационные элементы, которые возникли под воздействием давления на горные породы жидкости, газа, магматического расплава или их смесей (Старостин, Иванчук, Сандомирский, 1979).

Миграция минерализованных растворов в толщах пород контролируется общими и локальными полями напряжений, которые создают на отдельных участках избыточное давление поровой жидкости, что ведет к двустадийной деформации. В течение первой стадии происходит расширение трещин, расположенных под небольшим углом к направлению давления, и закрытие разрывов, ориентированных перпендикулярно. Во вторую стадию продолжают расширяться и удлиняться отдельные трещины по благоприятным направлениям и закрывается масса сопутствующих им мелких нарушений.

Гидравлические структуры широко распространены на месторождениях эндогенных руд, в частности, на месторождениях типа Миссисипийской долины, на вулканогенно-осадочных колчеданно-полиметаллических месторождениях в областях сжатия и растяжения и на медно-порфировых месторождениях.

На колчеданных месторождениях Рудного Алтая к таким структурам приурочены кварц-карбонат-барит-полиметаллические рудные тела, для каждого из которых характерны автономная минеральная, геохимическая и петрофизическая зональности. Состав залежей формировался за счет ремобилизации и переотложения компонентов ранних руд и, частично, за счет привнесенных из более глубинных источников.

Важная роль в перераспределении и отложении рудного вещества принадлежит гидравлическим процессам, она заключается в реализации благоприятного сочетания тектонофизических и гидродинамических явлений, приведших на ранних стадиях к возникновению магистральных трещин гидроразрывов и флюидных камер, а на поздних - к формированию в этих камерах полистадийных рудных тел. Данные структуры выполняют роль концентратов оруденения.

Причиной и стартовым моментом начала функционирования процессов гидравлической тектоники, наиболее вероятно, служили вертикальные тектонические движения и сопряженные с ними сдвиговые деформации. Они являются важнейшим компонентом единого цикла создания и деструкции земной коры. Особенно энергично подобные движения происходят в орогенных областях. Быстрый подъем огромных масс горных пород и их разрушение в горных сооружениях вызывает в приповерхностной зоне явления литостатической разгрузки. Скорости подъема блоков пород, согласно современным измерениям в Скандинавии, на Кавказе и в других регионах, по данным Н.И. Николаева (1988), П.Н. Николаева (1978) и В.К. Кучая (1983), колеблются в широких пределах: от 0,1 до 1-2 и даже более 10 мм/год.

Из анализа литературных данных и расчетов, выполненных А.А. Пэком (1990), следует, что длительность орогенного этапа в орогенных областях составляет 30-40 млн. лет, скорости подъема варьируют в пределах 0,07-4,5 мм/год, составляя в среднем около 1 мм/год. Амплитуды подъема достигают нескольких десятков километров.

В орогенных областях сопряженно развиваются два процесса: подъем к поверхности тектонически напряженных блоков пород и формирование вдавленных блоков (рамповые грабены). В первом случае происходит не только общее падение напряжения, но и более быстрое сокращение вертикальной составляющей тензора напряжений, возникает девиатор напряжений с вертикально направленными растягивающими усилиями. В результате мы имеем деформацию вертикального сдвигания при дополнительном горизонтальном сжатии. Это приводит к образованию трещин: горизонтальных - отрыва и сколовых - под различными углами к поверхности. По мере подъема массива и релаксации напряжения система : в поднятых блоках трещины отрыва становятся сначала наклонными, а затем вертикальными.

Во втором случае имеет место зонный орогенез (по В.К. Кучаю). В литосфере орогенов формируются астенолинзы. Под хребтами-поднятиями давление на астенолинзы больше, чем в соседних депрессиях. Вещество линз перетекает из поднятий в кору депрессий. Гранитные и базальтовые литопластины (а только они передают горизонтальное сжатие) под поднятиями более мощные, чем под депрессиями. На границах этих структур сплющиваются и утолщаются края литопластин, в результате здесь имеют место аномально высокие скорости движения. Происходит процесс приращения поднятий за счет предгорий.

Деформационные процессы в коре орогенов наиболее удачно можно объяснить с позиции модели всестороннего сжатия, разработанной В.К. Кучаем. Во вдавленных блоках на границах поднятий и депрессий накапливается большая плотность упругой энергии. В перенапряженных породах в результате всестороннего сжатия при образовании поверхности разрыва начинается процесс самопроизвольного хрупкого разрушения. Из самых общих представлений теории поля следует, что в перенапряженных сжатием породах достаточно возникновения незначительных добавочных девиаторных напряжений, чтобы осуществился переход энергии объемной деформации в энергию изменений формы или переход потенциальной энергии в кинетическую. Формируется очаг множества лавинообразно развивающихся хрупких трещин. Положение таких очагов совпадает с позицией центров разномасштабных землетрясений. Чем более прочные и упругие комплексы пород, чем больше их объем, и чем больше в них накопилось упругой энергии, тем более значительные массы пород будут брекчированы. Вертикальный диапазон образования таких брекчий в зависимости от конкретных геологических условий в орогенах колеблется от 5 до 25-30 км.

Подобные представления согласуются с геологическими данными. Находят объяснение образование мощных тел и зон объемных брекчий с , без признаков смещения, обломками и разрушение прежде всего наиболее прочных, упругих, малопористых пород на плутоногенных гидротермальных, скарновых, меднопорфировых, некоторых магматогенных и других эндогенных классах и типах месторождений.

Высказанные нами представления несколько дополняют идею о тектоно-кессонном геодинамическом эффекте, развиваемую П.М. Горяиновым и И.В. Давиденко (1979). Они объясняют все многообразие не только брекчиевых образований, но и бескорневых тел гранитов, пегматитов явлениями либо резкого, либо постепенного падения давления при подъеме блоков пород к поверхности. Вероятно, этот механизм образования геологических структур и деформации пород существует, но он не универсален и ограничен масштабами скоростей подъема, физико-механическими свойствами пород, типами и интенсивностями региональных полей напряжения и рядом других менее значимых факторов.

Таким образом, на границах вдавленных и поднимающихся блоков пород в упругоперенапряженных зонах с большим запасом энергии на глубинах 5-25 км формируются тела брекчий. В приповерхностных зонах при условии быстрого вертикального подъема тектонических блоков протекают процессы релаксации упругих напряжений, возникает анизотропное поле напряжений и формируется структурный парагенезис литостатической разгрузки (рис. 6). Он представлен горизонтальными трещинами отрыва, двумя системами трещин скола, чешуйчатыми кулисными отрывами, изогнутыми, дугообразными разрывами, которые оконтуривают удлиненные будинообразные блоки пород. Особенности этих дизъюнктивов - их полная сопряженность, отсутствие смещений, перетертого милонитового материала, следов участия флюидной фазы. Такие разрывы рассекают без смещения самые разнообразные породы вне зависимости от литологии и текстурно-структурных особенностей слагающих поднятый блок магматических, метаморфических и осадочных комплексов.

Эндогенные рудно-магматические системы

Системы этого типа распространены во всех глобальных структурах земной коры. Среди них наиболее изученными и уникальными по масштабам накопления рудного вещества выделяются: гипербазито-базитовые медно-никелевые, гранитоидные полиэтапные оловорудные, кимберлитовые и лампроитовые алмазоносные, базальтоидные субмаринные колчеданные и ряд других (рис. 7, 8).

Гипербазит-базитовые медно-никелевые системы. К этому типу относятся крупнейшие в мире рудные узлы, ассоциированные с расслоенными ультраосновными - основными комплексами (Садбери в Канаде, Бушвельд в Южной Африке, Норильск на Северо-Западе Сибирской платформы и др.). Все они приурочены к региональным глубинным разломам, ограничивающим крупные стабильные жесткие мегаблоки земной коры; развиваются на коре континентального типа; масштабы оруденения коррелируются со степенью дифференциации мантийных расплавов; процессы формирования рудоносных плутонов протекают в обстановке растяжения и с высокой скоростью; рудные районы характеризуются полиэтапностью развития и многоярусностью строения.

Норильская рудно-магматическая система, изученная О.А. Дюжиковым, В.В. Дистлером и др. (1986), приурочена к Приенисейскому мегаблоку, ограниченному крупнейшими мезозойскими внутриконтинентальными рифтами Земли - Енисейско-Хатангским и Западно-Сибирским. Главной магморудноконтролирующей структурой района служит Норильско-Хараелахский глубинный разлом (рис. 9).

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее