12114 (Нестехиометрические твердые оксиды - новые vатериалы современной техники)

2016-08-02СтудИзба

Описание файла

Документ из архива "Нестехиометрические твердые оксиды - новые vатериалы современной техники", который расположен в категории "". Всё это находится в предмете "биология" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "биология и химия" в общих файлах.

Онлайн просмотр документа "12114"

Текст из документа "12114"

Нестехиометрические твердые оксиды - новые vатериалы современной техники

А. Н. Петров

Введение

Обычно об открытиях в химии сообщается в специальных периодических изданиях - научных и технических журналах. Немногие из этих сообщений попадают в ежедневные газеты, потому что массовый читатель не в состоянии оценить их значение и важность. Однако представить число таких открытий можно по новым приборам, материалам и продуктам. Зачастую появление материалов с новыми свойствами или новым сочетанием известных свойств обеспечивает прорыв в какой-либо отрасли техники. Широко известно, что благодаря появлению полупроводниковых, резисторных, магнитных и других подобных материалов произошла революция в радиотехнике. На смену громоздким ламповым пришли компактные приборы, смонтированные на микро- и интегральных схемах. Прогресс в области получения новых материалов, может быть, не столь эффектный, как в приведенном примере, происходит постоянно. Успехи современной техники (радиоэлектроники, оптики, энергетики, машиностроения и т. п.), требующей получения материалов с нужными и воспроизводимыми свойствами, связаны непосредственно со многими химическими проблемами. Одной из этих проблем является проблема нестехиометрических соединений.

В данной статье мне хотелось бы рассказать о небольшой части проблем получения нестехиометрических оксидов, с которыми сталкиваются ученые кафедры физической химии Уральского государственного университета и решение которых в одних случаях уже внесло определенный вклад, в других - может положительно повлиять на развитие некоторых отраслей техники.

Что такое нестехиометрические соединения?

К основным законам химии принято относить стехиометрические законы - эквивалентов, постоянства состава вещества и кратных отношений. Они очень просты и знакомы всем из школьного курса химии.

Закон эквивалентов. Массовые количества составляющих химическое соединение элементов пропорциональны их химическим эквивалентам. Представления о химическом эквиваленте, или о пае, "соединительном" весе, и сам термин стехиометрия (от греческих слов stoicei - первоначало, элемент и metrew - измеряю) ввел И. Б. Рихтер (1793).

Закон постоянства состава. Состав химических соединений остается постоянным независимо от способа его получения. Практически именно с этого начинается изучение химии в школе. О постоянстве состава говорил уже М. В. Ломоносов в первой половине ХVII века, но формулировка (1799) исторически первого закона химии (химии как науки) принадлежит великому ученому Ж. Л Прусту, открывшему и отстоявшему его.

Закон кратных отношений. Массы элементов, образующие сложное химическое соединение, относятся между собой как небольшие кратные числа. Если какие-то два элемента образуют несколько соединений друг с другом, то весовые количества одного из элементов, приходящиеся на одно и то же количество другого элемента, будут относиться между собой как простые целые числа 1:1 (NO, CO и т. п.), 1:2 (NO2, CO2 и т. п.), 2:1 (Н2O и т. п.). Открытию этого закона (1803) мы обязаны великому химику, основоположнику новой химической атомистики Дж. Дальтону.

Значение трех законов стехиометрии для химии трудно переоценить. Они недаром получили название основных законов химии. Впервые появилась возможность разграничения между элементами и их простейшими химическими соединениями, с одной стороны, и растворами и смесями - с другой. Хаос представлений о составе веществ сменился вполне четкими понятиями, соответствующими качественной определенности одних веществ, химических индивидов, и неопределенности других - смесей.

Сформулированные в начале столетия законы стехиометрии более ста лет были незыблемой основой для химиков. В учебной и даже научной литературе по химии до сих пор продолжают развиваться традиционные взгляды на стехиометрические отношения как на основную закономерность, определяющую образование химических соединений. Но эти взгляды явно устарели. Основанные на ограниченном эксперименте, эти законы уже в самом начале вызвали серьезную критику со стороны выдающегося ученого К. Л. Бертолле, который, по существу, опровергал выводы о постоянстве состава и кратности элементов в сложном химическом соединении. Дискуссия между Прустом и Бертолле продолжалась несколько лет и закончилась поражением последнего. Как стало ясно сегодня, оно было кажущимся.

Триумф идей Пруста в споре с Бертолле о строго стехиометрическом составе химических соединений был обеспечен бурным развитием органической химии в 1830-1930 годах. Однако применительно к твердым веществам знаменитый спор между Прустом и Бертолле был лишен всякого смысла. Законы стехиометрии действительны лишь для молекулярной формы вещества и для молекул, построенных из небольшого числа атомов. По мере накопления экспериментального опыта к 1920-1930 годам становится ясным, что большинство твердых веществ относятся к немолекулярным системам, склонным в определенных пределах менять стехиометрические отношения элементов.

Почему один и тот же твердый материал, полученный в разных лабораториях, может иметь разные свойства?

Логическим следствием законов стехиометрии в классическом варианте (Пруста и Дальтона) является тезис: свойства вещества не зависят от того, как, где и в каких условиях оно получено. Это оказывается справедливым только для молекулярных соединений. Например, аммиак NH3 можно получить различными способами и в разных условиях:

прямым синтезом из простых веществ:

разложением аммонийных солей:

действием щелочами на аммонийные соли:

2NH4Cl + Ca(OH)2 = 2NH3 + CaCl2 = 2H2O

Состав молекулы аммиака постоянен (один атом азота и три атома водорода), следовательно, его свойства всегда неизменны. Газообразный аммиак как продукт, полученный в разных местах и разными способами, будет иметь одинаковые физико-химические свойства и будет отличаться только количеством примесей.

В противоположность этому любое кристаллическое вещество представляет собой систему (фазу), состоящую из огромного числа атомов (порядка 1021/см3). Для таких немолекулярных кристаллических веществ понятие молекулы лишено смысла. Для них формой существования химического соединения в твердом состоянии является фаза*, которая обладает новым качеством - непостоянством состава. Законы постоянства состава и простых кратных отношений для этих соединений неприменимы. Такие соединения называют нестехиометрическими.

Нестехиометрическое соединение можно определить как кристаллическое в равновесии со своим окружением; свойства кристаллической фазы могут изменяться с изменением состава, симметрия остается той же самой внутри всей области гомогенности фазы. Состав кристалла однозначно определяется составом повторяющейся элементарной ячейки. Химическая формула, отражающая формально состав таких фаз, может быть с иррациональными отношениями составляющих ее атомов, как в TiO1,9, TiO1.833, NbO2,4906, NbO2,4681.

Кристаллографически эти фазы вполне определенны (индивидуальны), и их состав по элементам можно представлять и в виде целых чисел - соответственно Ti10O19, Ti6O11, Nd53O132, Nd47O116. Как правило, такие фазы являются структурно родственными и образуют так называемые гомологические ряды Tin O2n-1, Nb3n-2O8n-4.

В нестехиометрических соединениях среднее число атомов, приходящееся на элементарную ячейку, не совпадает с числом позиций, соответствующих идеальному кристаллу, т. е. реальная кристаллическая решетка нестехиометрических фаз имеет дефекты. Дефектами называют локальные (точечные), плоскостные или пространственные нарушения строгой периодичности кристаллической решетки.

Реальная структура и, следовательно, истинный состав кристаллической фазы по составляющим элементам определяется термодинамическими условиями, которые создаются в процессе формирования и/или термообработки вещества. Следовательно, одно из следствий стехиометрических оснований химии, а именно постоянство состава вещества и независимость его свойств от способов и условий получения, для нестехиометрических фаз не выполняется. Особенно чувствительны к нестехиометрии магнитные, электрические, оптические, каталитические и другие так называемые структурно-чувствительные свойства. Поэтому при синтезе веществ и получении из них твердых материалов для современных отраслей техники (оптики, радиоэлектроники, энергетики и др.) особое внимание следует уделять проблемам нестехиометрии, концентрации и природы дефектов.

Нестехиометрические оксиды - новые материалы для квантовой электроники

Использование лазеров в самых разнообразных отраслях науки и техники общеизвестно. Но только специалисты знают, какое множество задач необходимо решить, прежде чем прибор будет удовлетворять необходимым эксплуатационным требованиям. Широкое распространение получили газовые лазеры, среди которых особое место занимают СО2-лазеры непрерывного действия. Для создания активной среды (как говорят, "накачки") в СО2-лазерах используют электрический тлеющий разряд.

Рис.1.Схема СО2-лазера небольшой мощности с диффузным охлаждением: 1 - плазма; 2- кольцевые электроды; 3 - инфракрасный луч; 4 - полупрозрачные зеркала из ZnSe или AsGa; 5 - охлаждение; 6 - отражатель

Простейшая схема СО2-лазера представлена на рис. 1. Линейная молекула СО2, возбужденная разрядом, совершает колебательные движения. При переходе из одного колебательного состояния в другое излучается лазерный квант. В результате генерируется энергия излучения с частотой в глубокой инфракрасной области 10,6 мкм. Генерируемый лазером невидимый инфракрасный луч обладает уникальным свойством проникать сквозь туман, облака, песчаные бури. Это позволило создать принципиально новый тип приборов космической и авиационной связи, систем наведения и локации, приборов ночного видения и т. п. Кроме того, при взаимодействии такого луча с материалом возможно достижение фантастических температур порядка 4300-4500оС (температура плавления самого тугоплавкого металла - вольфрама - 3380оС).

Именно на основе мощных СО2-лазеров проточного типа воплощена в реальность фантастическая идея гиперболоида инженера Гарина - созданы промышленные установки для резки тугоплавких материалов. Однако по мере изучения физики разряда и совершенствования приборов выяснилось, что создание надежных и долговечных СО2-лазеров имеет, казалось бы, непреодолимые ограничения физического и химического характера. В жестких условиях электрического разряда рабочие молекулы углекислого газа распадаются, диссоциируя по реакции

Происходит деградация рабочей газовой среды, нарушается устойчивость разряда, падает мощность, и прибор перестает излучать. Наряду с этой кардинальной проблемой возникают проблемы стабильности тлеющего разряда, устойчивости материалов конструкций в плазме и т. п. Например, катод, традиционно выполненный из металлов (как правило, из никельсодержащих сплавов, иногда с добавками металлов платиновой группы), испаряясь, оседает на зеркалах, волноводе и препятствует выводу излучения.

С момента начала разработок СО2-лазеров (1964) физики и химики ищут пути преодоления этих и многих других материаловедческих проблем квантовой электроники. В частности, для предотвращения катастрофической деградации углекислого газа используют систему прокачки с постоянным обновлением среды, стали применять дополнительные системы регенерации, где в качестве катализаторов применяют металлы Pt-группы. Однако использование дополнительных систем усложняет конструкцию, делает ее громоздкой и ненадежной, а в случае отпаянных СО2-лазеров (которые из-за своей миниатюрности в зарубежной литературе получил название the hand-held laser) для космической и авиационной связи оказывается просто неприемлемым.

В 1983 году кафедра физической химии Уральского государственного университета была подключена к работе над государственной программой создания принципиально нового прибора для космической связи - отпаянного волноводного СО2-лазера. Первоначально перед нами, химиками, была поставлена конкретная задача - разработать миниатюрный каталитический блок, который можно было бы разместить внутри hand-held laser, не нарушая его оптической системы.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее