10063 (Многолетние биологические ритмы в жизни животных и человека)

2016-08-02СтудИзба

Описание файла

Документ из архива "Многолетние биологические ритмы в жизни животных и человека", который расположен в категории "". Всё это находится в предмете "биология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "биология" в общих файлах.

Онлайн просмотр документа "10063"

Текст из документа "10063"

Генетика и развитие циркадианных ритмов беспозвоночных

Созревание колебателя и наблюдаемых ритмов

Настоящая глава охватывает процесс созревания в ходе онтогенеза и генетику ведущего осциллятора и наблюдаемых (ведомых) ритмов у беспозвоночных. Обсуждение в основном ограничено многоклеточными организмами, кроме тех случаев, когда представляется важным сопоставление с низшими организмами. Термины «колебатель» и «осциллятор» обычно будут употреблять в единственном числе, хотя действительный физиологический колебатель может состоять из многих компонентов или, по меньшей мере, может быть представлен двумя симметричными центрами в разных полушариях мозга. Суточные ритмы, наблюдаемые только при чередовании света и темноты, а в постоянных условиях затухающие, не обсуждаются.

При исследовании онтогенетического развития циркадианных ритмов возникает важный вопрос: может ли какая-либо информация о ритмах передаваться потомкам через яйцо? Иными словами, существует ли какое-то кодированное сообщение о фазе или периоде колебаний, переходящее от поколения к поколению? Мутации, изменяющие свободнотекущий период, действительно встречаются. Из этого следует, что информация о длине периода может быть закодирована в ДНК и затем воспроизведена в следующем поколении. Каких-либо других данных по этому вопросу очень мало. Одно чрезвычайно интересное сообщение касается плодовой мушки, у которой фаза ритма куколочной линьки будто бы может передаваться потомству от матери. Правда, эти сведенья до сих пор остаются неподтвержденным. Такая передача фазы могла бы означать, что, либо в яйце продолжаются колебания, фаза которых установлена матерью, либо информация о фазе сохраняется во время отсутствия колебаний в закодированной форме. Подобное кодирование фазы, возможно, происходит у пчел, поскольку было показано, что заученное время кормления (т.е. определенная точка (циркадианного цикла) может быть передано необученной пчеле путем пересадки замороженной ткани мозга пчелы-донора.

Другой важный вопрос касается взаимоотношения между появлением наблюдаемого ритма и созреванием осциллятора, который его контролирует. Например, у дрозофилы момент выхода взрослой особи из куколки ограничен «воротами», контролируемыми циркадианными осциллятором. Ступенчатый переход от света к темноте на стадии личинки, а также импульсы света или изменения температуры на стадии куколки способны определить фазу ритма выведения. Информация о фазе в принципе могла бы запасаться в какой-то «свернутой» форме на стадии личинки и куколки, а проявляется лишь после созревания циркадианных колебателей; или же на этих стадиях могли бы происходить скрытые колебания, проявление которых в виде наблюдаемых ритмов отсрочено до взрослой стадии. На самом деле имеет место второй вариант, что было показано в изящных экспериментах с измерением кривой смещения фазы (КСФ) при воздействии вспышек света через регулярные промежутки времени на стадии куколки. В каждый из пяти дней существования куколки были получены сходные КСФ, откуда следует, что в это время действительно продолжались циркадианные колебания.

Циркадианные осцилляторы способны ограничивать «воротами» определенные этапы индивидуального развития. Например, у Drpsophila pseudoobscura время окукливания, момент появления желтой окраски глаз и окрашивания глазковой щетинки не зависит от циркадианного осциллятора, хотя его колебания в это время происходят. Между тем момент выхода куколки находится под циркадианным контролем. Так же обстоит дело у D.me Lanogaster. Это можно объяснить с помощью механизма сцепления: фактор, которому предстоит связать ведущий осциллятор с определенными событиями индивидуального развития, сам созревает лишь на стадии поздней куколки. Совершенно иная картина наблюдается у D. Victoria. Здесь окукливание так же ритмично, как и выход из куколки, хотя все промежуточные события на стадии куколки, включая выворачивание головы, появление желтого пигмента глаза и окрашивание глазковых щетинок, аритмичны. Таким образом, у D. Victoria действует два независимых осциллятора или же один осциллятор, но с двумя разными механизмами сцепления.

У бабочки Pectinophora эмбриональный период достаточно продолжителен(10-13 дней при 20С), чтобы можно было исследовать созревание осциллятора, контролирующего ритм вылупления из яйца. Минис и Питтендрих показали, что импульсные и ступенчатые воздействия светом и изменения температуры способны синхронизировать ритмы вылупления в популяции яиц, не ранее, чем на 6-й день эмбрионального развития. Таким образом, на этом этапе информация из внешней среды может быть усвоена, с тем, чтобы проявиться спустя несколько дней, после выхода гусениц из яиц. Вероятно, на 6-й день эмбрионального развития начинает действовать осциллятор, контролирующий вылупление.

У насекомых претерпевающих полный метаморфоз, большой интерес представляют взаимоотношения осцилляторов, контролирующих циркадианные ритмы на разных стадиях развития. Этому вопросу есть данные о четырех организмах. У бабочек–сатурний часы, контролирующие ритм линьки, выдают гормональный сигнал, тогда как контроль ритма полетной активности осуществляется с помощью электрических сигналов, поскольку для сохранения ритма необходим интактный проводящий путь от мозга до грудных ганглиев. Таким образом, эти два ритма либо задаются разными осцилляторами, либо одним осциллятором, но с участием разных механизмов сцепления. У бабочек Pectinophora исследованы ритмы вылупления из яиц, линьки и яйцекладки. При изучении регуляции циркадианных ритмов необходимо различать наблюдаемые ритмы, с одной стороны, и контролирующие их колебатели – с другой. Один и тот же колебатель может быть сцеплен с различными ритмами по-разному (либо посредством вынужденных колебаний, либо через колебательные механизмы), что приводит к многообразию наблюдаемых фаз и профилей ритмов. Pectinophora при СТ 14:10 обычно откладывает яйца в темноте, а выход гусениц и имаго происходит в светлое время суток, причем пик для второго из этих процессов на 3ч позже, чем для первого. Таким образом, каждый ритм имеет свою особую фазу относительно циклов освещенности. Эти ритмы в разной мере поддаются направленному отбору на более раннюю и более позднюю фазы. Последовательный искусственный отбор проводился в отношении ритма выхода имаго, и именно по этому признаку были получены наибольшие различия между «ранней» и «поздней» линиями.

Ритм вылупления из яиц тоже может заметно сдвинуться по фазе, в то время как фаза ритма яйцеклетки остается у всех линий одинаковой. Результаты отбора можно интерпретировать либо как наследственное изменение свойств колебателя, либо как изменения «выходных» механизмов – может быть, механизма сцепления колебателя с подневольными наблюдаемыми ритмами. Поскольку КСФ у ранней и поздней мутантных линий не измерялись, ни одному из этих вариантов пока нельзя отдать предпочтение. Аналогичным образом, все три ритма с их различными фазами могут различаться не ведущими осцилляторами, а лишь связующими и «выходными» механизмами. Одно наблюдение, однако, можно истолковать в пользу различия самих осцилляторов: свободнотекущий период ритма выхода из яиц близок к 24ч, тогда как периоды двух других ритмов составляют 22,5ч.

Правда, это различие периодов может быть обусловлено тем, что один и тот же осциллятор на постэмбриональных стадиях развития укорачивает свой период в результате созревания входных сенсорных путей или дополнительных клеток-часов.

У Drosophila melanogaster найдены мутации, затрагивающие периодичность выхода из куколок и подвижности взрослых особей. Эти мутации действуют на оба ритма сходным образом. Еще одна мутация, недавно выявленная в отдельном локусе, удлиняет период обоих ритмов на 1,5 ч. Кроме того, оба ритма могут захватываться на стадиях личинки и куколки, и КСФ колебателя дикого типа для обоих ритмов близки по форме и амплитуде. Эти результаты, как и данные о Pectinophore, позволяют предположить, что оба ритма контролируются сходными, если не тождественными осцилляторами.

Мультигенный анализ

Нейман изучал у комара Clunio, обитающего в приливной зоне, различия между природными популяциями по времени выведенного имаго. Линии, выделенные в разных местах европейского побережья, различаются по этому признаку, так как они приспособлены к местным особенностям приливов и отливов. После скрещиваний двух линий с разным временем выхода имаго первое поколение потомков выводилось в какое-то промежуточное время. Возвратное скрещивание первого поколения с одной из родительских линий тоже давало промежуточное время. Таким образом, время выхода взрослой формы у Clunio контролируется продуктами одного или нескольких генных локусов. У гетерозигот это время выхода зависит от средней активности продуктов всех локусов, а не от простого сложения их эффектов, так как в последнем случае получился бы двухвершинный ритм с пиками, соответствующими временами выхода имаго у двух родительских форм.

Ренсинг и др. исследовали межлинейное различия в суточном профиле потребления кислорода у Drosophila melanogaster. В результате сравнения линий с разными соотношениями числа Х-хромосом и аутосом был сделан вывод, что Х-хромосома существенно влияет на положение вечернего максимума потребления кислорода при режиме СТ 12:12. У дрозофилы и бабочки пектинофоры путем отбора можно получить линии с ранним и поздним временем выведения. Отбор в лабораторной популяции Drosophila melanogaster дикого типа привел к большему размаху вариации по этому признаку, чем отбор в природной линии мух; это свидетельствуют о том, что длительное разведение в лаборатории ослабило давление отбора. В результате селекции D. pseudoobscura на протяжении 50 поколений были получены две стабильные линии с ранним и поздним временем выведения имаго, различия между которыми составляло около 4 ч. Однако КСФ для обеих линий, как выяснилось, совпадают; значит, отбор, вероятно, затронул лишь внешние ведомые системы (которые сами по себе могут быть колебательными), но не ведущий осциллятор, способный непосредственно реагировать на свет.

В результате отбора ранней и поздней линии Pectinophora было получено 5-часов различие фаз выведения. КСФ у этих двух линий не измерялись, но зато были сопоставлены различия по трем наблюдаемым ритмам. Оказалось, что на ритмы вылупления из яиц и выхода из куколки отбор повлиял одинаково: по их фазам при режиме СТ14:10 линии различались на 5ч. Ритм откладки яиц, напротив, у обеих линий совпадал.

Таким образом, путем отбора удалось выявить различие двух коллебателей, задающих ритмы вылупления и выхода из куколки, с одной стороны, и ритм яйцекладки - с другой.

Анализ отдельных генов

У двух видов дрозофилы были найдены мутации отдельных генов, влияющих на ритмы выхода из куколки и подвижности взрослых особей. В Х-хромосоме D. Pseudoobscura было локализовано 5 мутаций, вызывающих аритмию в условиях постоянного освещения. У мутантов при переменном освещении в той или иной степени проявлялись вынужденные, экзогенные ритмы выведения имаго. Эти пять мутаций можно было разделить на две комплементационные группы. Двойные гетерозиготы внутри каждой группы в постоянных условиях были аритмичны, в то время как у двойных гетерозигот с мутациями из разных групп наблюдались свободнотекущие ритмы с более длинным периодом, чем у дикого типа, а фазы их ритмов запаздывали примерно на 5ч относительно фаз дикого типа, как при переменном освещении, так и в постоянных условиях после захватывания. Таким образом, комплементация между двумя группами «аритмичных» мутаций оказалась неполной. Это позволяет думать, что для нормального ритма необходимо по меньшей мере два различных генных продукта. Результаты указывают также на то, что и период, и фазы ритма находятся под генетическим контролем и что продукты генов, участвующие в поддержании ритмичности, в то же время влияют на фазу ритма. Из того факта, что у мутантов утрачены как ритмы выведения, так и ритм подвижности, следует, что осцилляторы, контролирующие эти ритмы, имеют, по крайне мере один общий компонент, хотя у мух дикого типа свободнотекущий период второго ритма значительно короче, чем первого.

У D. pseudoobscura в Х-хромосоме были найдены четыре мутации, влияющие на период ритмов выведения и двигательной активности имаго. Три из них – аллельные и локализованы в области ЗВ1-2. четвертая находится в области 10;она удлиняет период обоих ритмов на 1,5ч. Три мутации из области ЗВ1-2 относится к локусу per. Изменения этого локуса могут сокращать период ритма до 19 ч(per5), удлинять его до 29ч(per1) или вовсе уничтожить ритмичность(per0). Свободнотекущие периоды обоих ритмов у Drosophila melanogaster так же, как у D. pseudoobscura.

Аллели per1 и per0 почти полностью рецессивны по отношению к гену дикого типа. У гетерозигот pers + и per5/ per1 периоды промежуточные между периодами соответствующих гомозигот. Аллель per0 ведет себя как отсутствие области ЗВ1-2 из чего можно заключить, что при этой мутации не образуется активного генного продукта.

Хотя мутации per5 и per1 резко изменяют период ритмов выведение и подвижности имаго, оба периода все же остается мало зависимыми от температуры в диапазоне от 18 до 25С. Однако температурная зависимость при этих двух мутациях противоположна: у мутантов per1 период с повышением температуры удлиняется, а per5- укорачивается; иными словами, при низких температурах период обоих мутантов приближаются к периоду дикого типа. Таким образом, эти мутации влияют и на чувствительность колебателя к температуре.

Область Х- хромосомы, на которой картированы аллели per, была подробно исследована Джаддом и др. в этой области число комплементационных групп леталей примерно равно числу видимых хромосомных дисков. Генетический анализ позволяет думать, что каждая такая группа соответствует определенному диску. Однако локус per не является аллелем какого-либо из деталей этой области. Очевидно, это не жизненно важный локус, поскольку его мутации не приводят к гибели насекомого. Возможно, что локус per – регуляторный, а не структурный ген. Для аллеля per5 была получена кривая смещения фазы. Примечательно, что эта мутация не только сокращает свободнотекущий период, но и увеличивает размах КСФ. Мутантная кривая относится к типу 0 по Уинфри, а нормальная – к типу 1. Таких мутантов, так же как и мух дикого типа D. Pseudoobscura, можно привести в почти аритмичное состояние одним критическим импульсом света, если приложить его в определенной фазе эндогенного цикла. Однако колебатель per отличается от колебателя D. Pseudoobscura тем, что его период короче, задержка его фазы протекает более медленно и между двумя критическими стимулами вызывающими аритмию, нет темновой адаптации.

Ритм выведения имаго у мутанта per0 поддается захватыванию температурными циклами, но нечувствителен к циклам освещения. Однако явление двустабильности, наблюдаемое при температурном захватывании колебателя дикого типа (когда ритм может поддерживать любую из двух возможных фаз, отстоящих друг от друга на 3ч), у этого мутанта отсутствует. Кроме того, вскоре после прекращения температурных циклов мутант per0 становится аритмичным. Таким образом, мутация per0 полностью уничтожает эндогенный характер колебателя.

Поскольку локус per находится в Х-хромосоме, мутацию per5 можно использовать в качестве маркера для картирования первичного эффекта гена, контролирующего часы, относительно культурных структур мозаичных мух, тела которых состоят из клеток разной половой принадлежности. Эффект этого гена выявляется вблизи головной кутикулы, что согласуется с локализацией часов в структуре мозга. Способность мозга контролировать ритм подвижности взрослых мух была установлена в опытах с трансплантацией мозга: пересадка его от донора per5 в брюшко наследственно аритмичному реципиенту per0 приводила к возникновению ритма подвижности с коротким периодом.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее