151123 (Экспериментальное наблюдение волн магнитного поля и исследование их распространения в металлах)

2016-08-02СтудИзба

Описание файла

Документ из архива "Экспериментальное наблюдение волн магнитного поля и исследование их распространения в металлах", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151123"

Текст из документа "151123"

ЭКСПЕРИМЕНТАЛЬНОЕ НАБЛЮДЕНИЕ ВОЛН МАГНИТНОГО ПОЛЯ И ИССЛЕДОВАНИЕ ИХ РАСПРОСТРАНЕНИЯ В МЕТАЛЛАХ


В.В. Сидоренков
МГТУ им. Н.Э. Баумана

В настоящее время установлено [1], что реальная структура электромагнитного (ЭМ) поля представляет собой необычное с общепринятых позиций вихревое векторное поле, состоящее из двух функционально связанных между собой электродинамических полей: вихревог ЭМ поля с компонентами электрической и магнитной напряженностей и поля ЭМ векторного потенциала с электрической  и магнитной  компонентами. Указанное поле описывается системой базовых исходных фундаментальных соотношений в виде дифференциальных уравнений:

(a) , (b) , (1)

(c) , (d) ,

которые непосредственно получаются из традиционных [2] уравнений Максвелла для ЭМ поля. Здесь - постоянная времени релаксации заряда в среде за счет электропроводности. Проведенный анализ показал [1], что с концептуальной точки зрения электродинамическое поле, описываемое системой (1) физически логично называть реальное электромагнитное поле.

Основным фундаментальным своством соотношений (1) является возможность вывода на их основе не только системы уравнений Максвелла с  и компонентами, но и структурно аналогичных максвелловской трех других систем электродинамических уравнений: поля ЭМ векторного потенциала с  и компонентами, электрического поля с и компонентами и, наконец, магнитное поле с и компонентами. В частности, система электродинамических уравнений для магнитного поля будет иметь следующий вид:

(a) , (b) , (2)

(c) , (d) .

Поскольку при изучении взаимодействия электродинамического поля с материальной средой, в сущности, все сводится к стремлению описать энергетику явлений электромагнетизма, то однозначным подтверждением реальности структуры магнитного поля в виде двух компонент и служит следующее из уравнений (2) соотношение энергетического баланса для потока энергии, обуславливающей явление намагничивания материальной среды:

div . (3)

Данное соотношение баланса описывает энергетику условий реализации обычной магнитной поляризации среды (первое слагаемое правой части (3)) посредством переноса извне в данную точку потока вектора соответствующей энергии. Однако это соотношение устанавливает также и наличие динамической поляризации вещества (в частности, проводящих сред) за счет действия переменной во времени магнитной компоненты поля векторного потенциала . Важно отметить, что явления динамической магнитной поляризации уже имеет прямое экспериментальное воплощение: это эффект динамического намагничивания в ферритах и магнитоупорядоченных металлах [3].

Форма представленных систем уравнений системы (2) говорит о существовании волновых решений для компонент и магнитного поля. В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений системы, и после чего подставить в него другое роторное уравнение. В качестве иллюстрации получим волновое уравнение, например, относительно :

.

Здесь, согласно (2d), , - оператор Лапласа, а - фазовая скорость волны в отсутствие поглощения. Как показал анализ [1], компоненты и волн магнитного поля в диэлектрической среде ведут себя специфично: , то есть имеют взаимный сдвиг по фазе на π/2. Кроме того, в зависимости от частоты их амплитуды связаны между собой весьма необычно: . Конечно, математически данный результат тривиально очевиден, поскольку, согласно (1), компоненты магнитного поля связаны посредством производной по времени. Однако концептуально с физической точки зрения это неожиданно и требует всестороннего анализа.

Справедливости ради следует сказать, что впервые о возможности реального существования чисто магнитной поперечной волны с двумя компонентами и , сдвинутыми при распространении по фазе на π/2, официально в виде приоритета на открытие заявил Докторович еще в 1980 году, и этот факт он с удивительным упорством, достойным лучшего применения, безуспешно пытается донести до других, ссылаясь на заявленный приоритет и свою статью по этой теме, везде публикуемую многие годы (например, [4]). Печально, но только Время - высший судья, и именно оно расставит всех и все по своим местам! Однако будем надеяться, что независимое подтверждение этого научного достижения Докторовича будет для него серьезной поддержкой в общении с оппонентами.

Анализ уравнений системы (2) показывает [1], что для проводящей среды в асимптотике металлов ( ), как и должно быть [2], их волновые решения имеют вид экспоненциально затухающих в пространстве плоских волн со сдвигом фазы между компонентами на π/4.

Наряду с теоретическим анализом, были проведены эксперименты по изучению необходимых условий возбуждения и возможность распространения электродинамических полей в металлах, отвечающие на два физически важных вопроса: волны каких полей можно реально возбудить в металлах и каковы частотные ограничения дисперсионного соотношения для проводящей среды в асимптотике металлов при длинах волн ?

Возбуждение электродинамических полей в металле (пластинки меди и алюминия) производилось на низких частотах = 50 50.103 Гц и было возможным только с помощью магнитной антенны, так как импеданс ближней зоны излучения лишь у магнитного диполя сопоставим с импедансом металлической среды. Прием прошедшего через металл излучения был возможным также лишь магнитной антенной, что однозначно говорит о наличии в принимаемом сигнале составляющей только магнитного поля и об отсутствии на выходе других составляющих электродинамического поля, названного в [1] реальное электромагнитное поля .

Д ля определения закона частотной дисперсии волнового числа магнитной волны в металле его действительная часть

измерялась по сдвигу фазы колебаний волны при ее прохождении в плоском слое толщиной l : , а мнимая часть - по затуханию амплитуды волны. Так как в теории металлов хорошим приближением является равенство [2], то следует ожидать, что указанные измерения посредством этих двух способов должны давать одинаковые результаты.

На рис. графически представлены результаты измерений по фазе (мелкие штрихи) и по затуханию (штрихи крупнее) для медной пластинки толщиной l = 1,9 мм. Видно, что измеренные указанными способами частотные зависимости значений и практически совпадают (различия менее 5 %) и соответствуют формуле волнового числа для плоской ЭМ волны в проводящей среде в асимптотике металлов [2] при (сплошная линия). Все это позволяет утверждать, что известная технология индукционного нагрева металлов с помощью магнитного индуктора – это использование в реальной практике физического процесса возбуждения в проводящей среде магнитных поперечных волн. Здесь вполне уместно и пошутить: если Вам повезло и Вы сделали открытие, то загляните в книгу, там об этом уже все написано!

Однако с понижением частоты значения мнимой части волнового числа сильно отклоняются от его действительной части : в медной пластинке на частотах 2.103 Гц и алюминия ( l = 1,4 мм) при 3.103 Гц. В области этих частот при их уменьшении, график переходит от обычного к линейной зависимости по и окончательно . Соответственно, определяемая из частотная зависимость скорости распространения волны в металле сначала ведет себя обычно , но при понижении частоты переходит к const и затем окончательно . Абсолютный минимум значений скорости для пластинки меди был ~ 14 м/с, а алюминия ~ 22 м/с. Отклонение характера частотных зависимостей и от обычных определяется толщиной проводящего слоя: в толстых пластинках это изменение наступает на меньших частотах, а в тонких – на более высоких частотах. Поскольку на фиксированной частоте величина является константой данного материала и не может зависеть от толщины слоя, то наблюдаемое отклонение закона дисперсии от , справедливого для поперечных плоских волн, физически обусловлено регистрацией структуры поля ближней зоны возбуждаемого излучателем (согласно измерениям, дипольного). Именно это и отражается в измерениях с понижением частоты при приеме сигнала прошедшего через пластинку излучения.

Резюме: установлено реальное существование в Природе волн магнитного поля, способных эффективно взаимодействовать и распространяться в металлах.

Литература:

1. Сидоренков В.В. // http://revolution.allbest.ru/physics/00036062.html.

2. Матвеев А.Н. Электродинамика. М.: Высшая школа, 1980.

3. Сидоренков В.В., Толмачев В.В., Федотова С.В. // Известия РАН. Сер.

Физическая. 2001. Т. 65. № 12. C. 1776-1782.

4. Докторович З.И. // http://www.sciteclibrary.ru/rus/catalog/pages/4797.html.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее