11078 (Концепція необоротності й термодинаміка. Самоорганізація у відкритих системах)

2016-07-28СтудИзба

Описание файла

Документ из архива "Концепція необоротності й термодинаміка. Самоорганізація у відкритих системах", который расположен в категории "". Всё это находится в предмете "биология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "биология" в общих файлах.

Онлайн просмотр документа "11078"

Текст из документа "11078"

Концепція необоротності й термодинаміка

Найбільш різке протиріччя в 19 столітті виникло між колишньою фізикою й еволюційною теорією Дарвіна. Якщо, наприклад, у механіку всі процеси представляються оборотними, позбавленими своєї історії й розвитку, то теорія Дарвіна переконливо довела, що нові види рослин і тварин виникають у ході еволюції в результаті боротьби за існування. У цій боротьбі виживають ті організми, які виявляються краще пристосованими до умов, що змінилися, навколишнього середовища. Отже, у живій природі всі процеси є необоротними. Те ж саме можна сказати в принципі й про соціально-економічні, культурно-історичні й гуманітарні системи, хоча еволюція в природі відбувається значно повільніше, ніж у суспільстві.

Фізика наближалася до дозволу зазначеного вище протиріччя через перегляд і створення ряду проміжних концепцій, однієї з яких є ідея про еволюцію систем, але не убік посилення їхньої організації й складності, а навпроти, - убік дезорганізації й руйнування систем.

Поняття часу в класичній термодинаміці

До виникнення термодинаміки поняття часу по суті було відсутнє в класичній фізиці в тім виді, у якому воно розглядається в реальному житті й у науках, що вивчає процеси, що протікають у часі й має свою історію. Хоча в якості змінної час входить в усі рівняння класичної й квантової механіки, проте воно не відбиває внутрішні зміни, які відбуваються в системі. Саме тому в рівняннях фізики його знак можна міняти на зворотний, тобто відносити його як майбутньому, так і до минулого.

Положення істотно змінилося після того, як фізика впритул зайнялася вивченням теплових процесів, закони яких були сформульовані в класичній термодинаміці. Якщо колишня динаміка описувала закони руху тіл під впливом зовнішніх сил, свідомо відволікаючись від внутрішніх змін, що відбуваються в механічних системах, то термодинаміка змушена була досліджувати фізичні процеси при різних перетвореннях теплової енергії. Однак вона не аналізує внутрішню будову термодинамічних систем, як це робить статистична фізика, що розглядає теплоту як безладний рух величезного числа молекул.

Термодинаміка виникла з узагальнення численних фактів, що описують явища передачі, поширення й перетворення тепла. Самим очевидним є той факт, що поширення тепла являє собою необоротний процес. Добре відомо, наприклад, що тепло, що виникло в результаті тертя або виконання іншої механічної роботи, не можна знову перетворити в енергію й потім використовувати для виробництва роботи. Не менш відомо, що тепло передається від гарячого тіла до холодного, а не навпаки.

З іншого боку, шляхом точних експериментів було доведено, що теплова енергія перетворюється в механічну енергію в строго певних кількостях. Існування такого механічного еквівалента для теплоти свідчило про її збереження. Всі ці численні факти й знайшли своє узагальнення й теоретичне пояснення в законах класичної термодинаміки:

Якщо до системи підводить тепло Q і над нею виробляється робота W, то енергія системи зростає до величини U: U= Q + W.

Цю енергію називають внутрішньою енергією системи, і вона показує, що тепло, отримане системою, не зникає, а затрачається на збільшення внутрішньої енергії й виробництво роботи, тобто Q= U-W.

Процес, єдиним результатом якого було б вилучення тепла з резервуара, неможливий.

Наведені формулювання відбивають зв'язку, які існують між тепловою енергією й отриманої за її рахунок роботою. У першому законі мова йде про збереження енергії, у другому - про неможливість виробництва роботи винятково за рахунок вилучення тепла з одного резервуара при постійній температурі. Наприклад, не можна зробити роботу за рахунок охолодження озера, моря або іншого резервуара при сталій температурі. Таким чином, другий закон, або початок термодинаміки, можна сформулювати простіше, як уперше це зробив французький учений Сади Карно (1796-1832).

Неможливо здійснити процес, єдиним результатом якого було б перетворення тепла в роботу при постійній температурі.

Іноді цей закон виражають у ще більш простій формі:

Тепло не може перетекти мимовільно від холодного тіла до гарячого.

Надалі німецький фізик Рудольф Клаузиус (1822-1888) використовував для формулювання другого закону термодинаміки поняття ентропії, що згодом австрійський фізик Людвіг Больцман (18441906) інтерпретував у термінах зміни порядку в системі. Коли ентропія системи зростає, то відповідно підсилюється безладдя в системі. У такому випадку другий закон термодинаміки постулює:

Ентропія замкнутої системи, тобто системи, що не обмінюється з оточенням ні енергією ні речовиною, постійно зростає.

А це означає, що такі системи еволюціонують убік збільшення в них безладдя, хаосу й дезорганізації, поки не досягнуть крапки термодинамічної рівноваги, у якій усяке виробництво роботи стає неможливим.

Оскільки про зміну систем у класичній термодинаміці ми можемо судити по збільшенню їхньої ентропії, те остання й виступає як своєрідна стріла часу. У механічних процесах ні про який реальний час говорити не доводиться. Задавши в них початковий стан (координати й імпульси), можна, відповідно до рівнянь руху, однозначно визначити будь-який інший її стан у майбутньому або минулому. Тому час у них виступає просто як параметр, знак якого можна міняти на зворотний, і в такий спосіб повернутися до первісного стану системи. Нічого подібного не зустрічається в термодинамічних процесах, які є необоротними по своїй природі.

Термодинаміка вперше ввела у фізику поняття часу в досить своєрідній формі, а саме необоротного процесу зростання ентропії в системі. Чим вище ентропія системи, тим більший часовий проміжок пройшла система у своїй еволюції.

Очевидно, що таке поняття про час і особливо про еволюцію системи докорінно відрізняється від поняття еволюції, що лежало в основі теорії Дарвіна. У той час як у дарвінівській теорії походження нових видів рослин і тварин шляхом природного добору еволюція спрямована на виживання більше зроблених організмів і ускладнення їхньої організації, у термодинаміку еволюція зв'язувалася з дезорганізацією систем. Це протиріччя залишалося недозволеним аж до 60-х рр. нашого століття, поки не з'явилася нова, нерівновага термодинаміка, що опирається на концепцію необоротних процесів.

Класична термодинаміка виявилася нездатної вирішити й космологічні проблеми характеру процесів, що відбуваються у Всесвіті. Першу спробу поширити закони термодинаміки на Всесвіт почав один із засновників цієї теорії - Р. Клаузиус, що висунув два постулати:

- енергія Всесвіту завжди постійна;

- ентропія Всесвіту завжди зростає. Якщо прийняти другий постулат, то необхідно визнати, що всі процеси у Всесвіті спрямовані убік досягнення стану термодинамічної рівноваги, що відповідає максимуму ентропії, а отже, стану, характерного найбільшим ступенем хаосу, безладдя й дезорганізації. У такому випадку у Всесвіті наступить теплова смерть і ніяка корисна робота в ній зробити буде не можна. Такі похмурі прогнози зустріли критикові з боку ряду видатних учених і філософів, але в середині минулого століття було ще мало наукових аргументів для спростування думки Р. Клаузиуса й обґрунтування альтернативного погляду. Деякі автори припускали, що поряд з ентропийними процесами в природі відбуваються антіентропийні процеси, які перешкоджають настанню «теплової смерті» у Всесвіті. Інші висловлювали сумнів у правомірності поширення понять термодинаміки, зокрема ентропії, з окремих систем на Всесвіт у цілому. Але тільки одиниці догадувалися, що саме поняття закритої, або ізольованої, системи є далеко, що йде абстракцією, що не відбиває реальний характер систем, які зустрічаються в природі.

Відкриті системи й нова термодинаміка

На відміну від закритих, або ізольованих, відкриті системи обмінюються з навколишнім середовищем енергією, речовиною й інформацією. Всі реальні системи є саме відкритими. У неорганічній природі вони обмінюються із зовнішнім середовищем, що також складається з різних систем, що володіють енергією й речовиною. У соціальних і гуманітарних системах до цього додається обмін інформацією. Інформаційний обмін здійснюється також у біологічних системах, зокрема при передачі генетичної інформації.

У відкритих системах також виробляється ентропія, оскільки в них відбуваються необоротні процеси, але ентропія в цих системах не накопичується, як у закритих системах, а виводиться в навколишнє середовище. Оскільки ентропія характеризує ступінь безладдя в системі, остільки можна сказати, що відкриті системи живуть за рахунок запозичення порядку із зовнішнього середовища.

Відкриті системи й нерівновага термодинаміки

Класична термодинаміка у своєму аналізі систем значною мірою абстрагувалася від їхньої реальної складності, зокрема, відволікалася від їхньої взаємодії із зовнішнім середовищем. Тому її вихідне поняття закритої, або ізольованої, системи не відбивало дійсного положення речей і приводило до протиріччя з результатами досліджень у біології й соціальних науках. Дійсно, еволюційна теорія Дарвіна свідчила, що живаючи природа розвивається в напрямку вдосконалення й ускладнення нових видів рослин і тварин. Історія, соціологія, економіка й інші соціальні й гуманітарні науки показували, що в суспільстві, незважаючи на окремі зиґзаґи й рух назад, у цілому спостерігається також прогрес.

На противагу цьому класична термодинаміка затверджувала, що фізичні й інші системи неживої природи еволюціонують у напрямку посилення їхнього безладдя, руйнування й дезорганізації. У такому випадку ставало незрозумілим, яким образом з неживої природи, системи якої мають тенденцію до дезорганізації, могла з'явитися коли-або живаючи природа, де системи, навпроти, прагнуть до вдосконалювання й ускладнення своєї організації. Все це показувало, що результати дослідження класичної термодинаміки перебували в явному протиріччі з тим, що було гарно відомо з біології, історії, соціології й інших суспільних наук.

Важливо також підкреслити, що самі поняття часу й еволюції по-різному інтерпретувалися в колишній термодинаміці, з одного боку, і в біології, соціології й історії, з іншої. Справді, так звана стріла часу зв'язувалася в термодинаміку зі зростанням ентропії системи, з посиленням її безладдя й дезорганізації, тоді як у біології й соціології вона розглядалася, навпаки, з погляду становлення й удосконалювання системи, збільшення в ній порядку й організації. Якщо еволюція в неживій природі витлумачувалася як поступовий рух систем до їхнього руйнування й дезорганізації, то в живій природі, навпаки, як повільний поступальний рух до посилення організації систем, їхньому вдосконалюванню й ускладненню. Недарма ж незабаром після того як був сформульований другий початок термодинаміки, з'явилися похмурі прогнози про «теплову смерть» Всесвіту.

У чому ж полягають причини такого протиставлення точок зору на поняття часу й еволюції? Як можна було дозволити протиріччя, що виникло між поданнями класичної термодинаміки й біології, соціології й історії? Очевидно, що для цього необхідно було переглянути ті вихідні поняття й принципи, яких дотримувалася стара, класична термодинаміка, тому що вони не відповідали дійсності, нашим спостереженням, а також результатам досліджень у біологічних і соціальних науках. Досвід і практична діяльність свідчили, що поняття закритої, або ізольованої, системи являє собою далеко, що йде абстракцію, і тому вона занадто спрощує дійсність, оскільки в ній важко або навіть неможливо знайти системи, які б не взаємодіяли з навколишнім середовищем, що складається також із систем. Тому в новій термодинаміці місце закритої, ізольованої, системи зайняло принципово інше фундаментальне поняття відкритої системи, що здатна обмінюватися з навколишнім середовищем речовиною, енергією й інформацією.

Одне з перших визначень цього поняття належить видатному австрійському фізикові Ервину Шредингеру (1887-1961), що сформулював його у своїй книзі «Що таке життя? З погляду фізика». У ній він ясно вказав, що закони фізики лежать в основі утворення біологічних структур, і підкреслив, що характерна риса біологічних систем складається в обміні енергією й речовиною з навколишнім середовищем. Він писав:

Засіб, за допомогою якого організм підтримує себе постійно на досить високому рівні впорядкованості (дорівнює на досить низькому рівні ентропії), у дійсності складається в безперервному витягу впорядкованості з навколишнього його середовища.

Взаємодіючи із середовищем, відкрите система не може залишатися замкнутої, тому що вона змушена запозичити ззовні або нову речовину або свіжу енергію й одночасно виводити в середовище використана речовина й відпрацьована енергія.

Але на відміну від закритих систем ця ентропія, що характеризує ступінь безладдя в системі, не накопичується в ній, а віддаляється в навколишнє середовище. Це означає, що використана, відпрацьована енергія розсіюється в навколишнім середовищі й замість її із середовища витягає нова, свіжа енергія, здатна робити корисну роботу.

Такого роду матеріальні структури, здатні розсіювати, енергію, називаються дисипативними. Звідси стає ясним, що відкрита система не може бути рівноважної, тому що її функціонування вимагає безперервного надходження із зовнішнього середовища енергії або речовини, багатого енергією. У результаті такої взаємодії система, як указує Шредингер, витягає порядок з навколишнього середовища й тим самим вносить безладдя в це середовище.

Очевидно, що з надходженням нової енергії або речовини неравноважність у системі зростає. В остаточному підсумку колишній взаємозв'язок між елементами системи, що визначає її структуру, руйнується. Між елементами системи виникають нові зв'язки, які приводять до кооперативних процесів, тобто до колективного поводження її елементів. Так схематично можуть бути описані процеси самоорганізації у відкритих системах.

Наочною ілюстрацією процесів самоорганізації може служити робота лазера, за допомогою якого можна одержувати потужні оптичні випромінювання. Не вдаючись у деталі його функціонування, відзначимо, що хаотичні коливальні рухи тридцятилітніх його часток завдяки надходженню енергії ззовні, при достатній його «накачуванні» приводяться в погоджений рух. Вони починають коливатися в однаковій фазі й внаслідок цього потужність лазерного випромінювання багаторазово збільшується. Цей приклад свідчить, що в результаті взаємодії із середовищем за рахунок надходження додаткової енергії колишні випадкові коливання елементів такої системи, як лазер, перетворюються в когерентний, погоджений колективний рух. На цій основі виникають кооперативні процеси й відбувається самоорганізація системи.

Вивчаючи процеси самоорганізації, що відбуваються в лазері, німецький фізик Герман Хакен (р. 1927) назвав новий напрямок досліджень сінергетикою, що в перекладі з давньогрецького означає спільну дію, або взаємодія, і добре передає зміст і ціль нового підходу до вивчення явищ.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее