108930 (Лазерная диагностика)

2016-08-02СтудИзба

Описание файла

Документ из архива "Лазерная диагностика", который расположен в категории "". Всё это находится в предмете "наука и техника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "наука и техника" в общих файлах.

Онлайн просмотр документа "108930"

Текст из документа "108930"

Дифракционные средства лазерной диагностики

     Дифракционные явления в оптике в обыденном представлении негативны, как причина ограниченности возможностей оптических систем, в том числе лазерных метрологических, навигационных и гироскопических приборов. Известны и полезные практические применения классической дифракции света, например, для измерения размеров отверстий, диаметров нитей и числа их в скрутке, показателей преломления и ряда других. Однако, есть важный аспект этих явлений - дифракционное обратное рассеяние (ДОР) на локальных неоднородностях в оптическом резонаторе, придающий им особый статус. Высокая чувствительность фазы результирующей ДОР к смещению выделенной локальной неоднородности (ВЛН) по оси резонатора лазера делает дифракцию средством управления характеристиками генерации как линейного, так и кольцевого лазера, а также тонким измерительным инструментом в области физических параметров. Укажем, например, возможность реализации внутрирезонаторного доплеровского измерителя скорости потока на основе ДОР, прямого измерения относительного превышения накачки над порогом и самих значений потерь резонатора и усиления активной среды [1] и др. В данной работе приведен пример достаточно простого определения на основе ДОР некоторых физических параметров, измерение которых традиционными способами считается весьма трудоемким, например: коэффициента конвективной теплоотдачи, величины поляризационного оптического дихроизма поглощения - по термической реакции ВЛН, определяющей ДОР в резонаторе лазера, на поглощаемую ею энергию оптического излучения.

     Запишем поля бегущих встречных волн в резонаторе лазера с частотой генерации w в виде
E2,1(z, t) = E2,1(t)exp{- j(w t ± kz + F2,1(t))}, где E1,2(t), F1,2(t) - медленные вещественные амплитуды и фазы волн, обозначим F(t)= F1(t) - F2(t) - разность фаз. В линейном лазере Fє Const(t), т.к. встречные волны жестко связаны отражением на зеркалах, а в кольцевом лазере F(t) зависит от присутствующих в резонаторе локальных неоднородностей (в т.ч. диафрагм), создающих кроме дополнительных потерь каждой из волн, также линейную связь встречных волн вследствие их обратного рассеяния. Обозначим M, Q - амплитуду и фазу результирующего (эффективного) комплексного коэффициента связи встречных волн на всех неоднородностях резонатора, создающих обратное рассеяние, m, u - амплитуду и фазу парциального коэффициента ДОР от одной выделенной локальной неоднородности. Характер зависимости фазы результирующего коэффициента связи Q от u (фазы ДОР на ВЛН) определяется соотношением амплитуд M, m. При m << M фаза Q мало чувствительна к изменениям u, однако, при m @ M фаза Q практически точно "следит" за u, а в промежуточных случаях Q следует u только в среднем за период (D Q = 2p в интервале D u = 2p). При использовании в качестве ВЛН одномерной диафрагмы (ОД) в плоскости z=z0 в виде тонкой отражающей металлической нити u = - 2kz0. Следовательно, в случае вклада ДОР от ОД, преобладающего над всеми прочими источниками обратного рассеяния, перемещение диафрагмы по оси z резонатора z0(t) приводит к управлению фазой Q результирующего обратного рассеяния через фазу u ДОР от ОД
Q (t) = u (t) = - 2kz0(t).

      Из укороченных уравнений для E1,2(t), F1,2(t), усредненных по объему резонатора с локальными неоднородностями, запишем e - потери за проход в резонаторе, I - безразмерную интенсивность одномодовой генерации и F - разность фаз встречных волн, не ограничиваясь слабым полем, но без учета пространственной модуляции заселенностей в поляризуемости активной среды и при I = (I1 + I2) >> Ѕ I1 - I2Ѕ в виде e = e 0 + m - M Cos(F + Q ); I = (c /e )2 - (1 + f2); F(t) = - Q (t) - Б (t); c , e 0 - усиление в активной среде и собственные потери резонатора без диафрагмы за проход, m - ординарные дифракционные потери, вносимые диафрагмой, f - безразмерная отстройка частоты w от центра линии активной среды, Б(t) - известная функция времени [2], зависящая от расщепления встречных волн и полосы захвата. В дифракционной картине от ОД - цилиндра радиуса r , в интерференционной составляющей интенсивности дальней зоны наблюдения в направлении j вне резонатора можно записать разность фаз дифрагированных встречных волн в геометрооптическом приближении F (t) = 2k [z0(t) - r 21/2 Sin(j /2 - p /2)] - F(t).В линейном лазере (F = Const(t)) модуляция интенсивности I(t), обусловленная e (t), как и Ф(t) в дифракционной картине, однозначно характеризуют перемещение диафрагмы z0(t) по оси z.

      В экспериментах в линейном лазере ОД в виде медной нити радиуса r =30 мкм и длиной l0=50 мм, перпендикулярной оси z резонатора, имела форму дуги стрелкой вдоль z с высотой сегмента d0 » 2 мм. Проявление ДОР от ОД состояло в том, что при прерывании потока энергии, освещающего участок ОД, погруженный в лазерный пучок с длиной волны l = 0.63 мкм, в интенсивности генерации I(t) и в дифракционной картине Ф(t) возникали колебания длиной h макс= (3 - 5) периодов с затухающей частотой. Детальное исследование проводилось с применением для управления ДОР от ОД внешних лазерных пучков ТМ или ТЕ поляризованных по отношению к нити, фокусируемых на заданный участок нити, прерываемых заслонкой. Постоянная времени затухания t практически не зависела от обстоятельств опытов, но асимптотическое значение hмакс существенно зависело от поляризации и интенсивности пучка, освещающего участок нити ОД, отражающих свойств материала нити, высоты сегмента d0 и была аддитивна при совместном освещении участка нити несколькими пучками с разных сторон. Это позволило объяснить реакцию ОД на изменение интенсивности изменением фазы ДОР от ОД (играющей роль ВЛН) вследствие перемещения по оси z участка нити, погруженного в световой пучок, на величину h = 2(D z0)/l , h(t) = h макс (1 - et/t ) по причине некоторого изменения (D d) стрелки дуги нити ОД при ее термическом удлинении вследствие изменения поглощаемой оптической мощности. При мощности излучения внешнего источника W » 1.5 мВт максимальная величина hмакс= 5 получена с TE поляризацией света, а с TM вдвое меньше (это объяснено различием коэффициентов поглощения q). Время релаксации t при такой аппроксимации, усредненное по большому числу экспериментальных кривых, t = {0.21 ± 0.03] c.

     Расчет удлинения нити в виде дуги большого радиуса с закрепленными концами показал, что приращение стрелки прогиба много больше удлинения нити |D l|<< |D d| << d. Расчет удлинения однородной нити при нагреве D l(t) удобно вести через приращение температуры DT(t)=T(t)-T0 среднее по ее длине (T0 - температура термостата, черта снизу означает среднее по длине нити), которое определяется интегральным приращением количества тепла по всей нити DQ(t)=Q(t)-Q0 и не зависит от его распределения по длине. В таких приближениях связь D T(t) c h (t) получена в виде DT(t) = h (t)(8l d0)/(3a l02), где a - коэффициент термического расширения. Для интерпретации экспериментальных результатов средний нагрев нити DT(t) ищем в рамках задачи теплопроводности для однородного цилиндра конечной длины с термостатированными при T0 концами и конвективной теплоотдачей с боковой поверхности в воздушный термостат при T0 , излучение с боковой поверхности не учитывается. Цилиндр нагревается локальным источником мощностью P по кольцу в плоскости x=x0, распределением температуры по радиусу пренебрегаем, решаем одномерную задачу для В =T(x,t) (00 в виде ¶ В / ¶ t = A22В / ¶ x2 - c (В -T0) + G(x,t), где G(x,t) = (P/(mнcv))g(t)d (x-x0) - функция возмущения внешним источником, g(t) - ступенчатая функция включения; mн=m p r 2l0 - полная масса нити с плотностью m , A = [b /(m cv)]1/2, c = k/(a m cv); A, b , k - коэффициенты температуропроводности, теплопроводности и конвективной теплоотдачи, cv - теплоемкость. Решение для D T(x,t) = В -T0, усредненное по длине нити, имеет вид D T(t) = 4P/(p mнcv)S i [Sin((2i+1)p x0/l0) (1- e-t/ q) / ((2i+1)q i)] , где обозначено q i-1 = [c + g (2i+1)2], g = (p A/l0)2, индекс суммирования 0 < i < Ґ . Для качественного сравнения экспериментальных результатов с приводимой здесь теоретической интерпретацией реакции ОД достаточно учета 1-2 членов ряда (быстрая сходимость при не очень больших c/g ). При учете одного члена (i =0) запишем DTмакс » 4PSin(px0/l0)[1 - e-(c+g )t] / [p mнcv(c+g)]. Видно, что все отмеченные особенности экспериментально наблюдаемой реакции ОД хорошо качественно описываются на основе такой модели при соотношениях t = (с+g)-1, hмакс = 1.5 Wq[tal02/(pld0mнcv)] Sin(px0/d0), где q - поляризационный коэффициент поглощения, зависящий от материала нити. Рассчитанное по этим данным 1/g = 1.84c >> t показывает, что скорость релаксации реакции ОД определяется преимущественно скоростью конвективной теплоотдачи (c >> g). По найденному c = (t -1 - g) = 4.22 c-1 определен коэффициент конвективной теплоотдачи k = 1.09Г (Г = 10-2 Вт/см2град, учет второго члена ряда увеличивает k на » 10%), близкий с известными эмпирическими значениями (1.1 - 1.9)Г для контакта металлического цилиндра с воздухом. Экспериментально определенное соотношение для TM, TE поляризации падающего поля h макс(TE) / h макс(TM) » 2 непосредственно дает величину поляризационного дихроизма поглощения света объектом, используемым в качестве ОД, измерение которого другими способами затруднительно [3], а расчет требует строгого учета качества поверхности исследуемого образца. Это показывает перспективность использования ДОР как инструмента физических и прикладных исследований.

Литература

В.Н.Смирнов, Г.А.Строковский // Сибирский физико-технический журнал - 1992, вып.2, с.121-127.

Э.Е.Фрадкин и др. Волновые и флуктуационные процессы в лазерах.-М.: Наука,1974.- 416с.

А.Б.Катрич // ЖТФ, 1983., вып.3, с.604 - 605.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее