49461 (ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы дифференциальных уравнений)

2016-07-28СтудИзба

Описание файла

Документ из архива "ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы дифференциальных уравнений", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "лабораторные работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49461"

Текст из документа "49461"

Министерство Топлива и Энергетики Украины

СЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ

Практическое занятие №4

по дисциплине

«Использование ЭВМ в инженерных расчетах электротехнических систем»

Тема : ЭВМ С ИСПОЛЬЗОВАНИЕМ МАТЕМАТИЧЕСКОГО ПАКЕТА MathCad В СРЕДЕ WINDOWS 98 ДЛЯ РЕШЕНИЯ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.

Вариант №8

Выполнил: студент группы ЭСЭ 22-В

Левицкий П.В.

Проверил:_______________________

Севастополь 2008

ПЛАН

1. Данные варианта задания.

2. Решение системы дифференциальных уравнений, заданной в нормальной форме Коши

2.1 Теоретическое обоснование

2.2 Теоретическое обоснование применения преобразования Лапласа

2.3 Общее решение однородной системы

2.3.1 Определение аналитических зависимостей изменения переменных состояния системы при заданных начальных условиях и отсутствии внешнего воздействия с использованием переходной матрицы.

2.3.2 Определение аналитических зависимостей изменения переменных состояния системы при заданных начальных условиях и отсутствии внешнего воздействия с использованием функции Mathcad

2.3.3 Определение аналитических зависимостей изменения переменных состояния системы при заданных начальных условиях и отсутствии внешнего воздействия с использованием преобразования Лапласа

2.4Частное решение неоднородной системы дифференциальных уравнений

при заданном внешнем воздействии и нулевых начальных условиях

2.4.1 Решение с применением функций MATHCAD

2.4.2 Решение с применением преобразования Лапласа

2.5Частное решение неоднородной системы дифференциальных уравнений

при заданном внешнем воздействии y=cos(2t) и нулевых начальных условиях

2.5.1 Решение с помощью переходной матрицы

2.5.2 Численный метод решения системы дифференциальных уравнений при нулевых начальных условиях и заданном внешнем воздействии y=cos(2t) c помощью MATHCAD.

2.5.3 Решение системы дифференциальных уравнений при нулевых начальных условиях и заданном внешнем воздействии y=cos(2t) c помощью преобразования Лапласа

2.6 Решение неоднородной системы дифференциальных уравнений

при заданном внешнем воздействии и начальных условиях

2.6.1 Решение с помощью функции MATHCAD

2.6.2 Решение с помощью преобразования Лапласа

2.6.3 Решение с помощью преобразования Лапласа (способ второй)

3. Выводы по работе №4.

1. Данные варианта задания

Система линейных дифференциальных уравнений в форме Коши

Таблица № 1

вар

Ко э ф ф и ц и е н т ы с и с т е м ы д и ф ф е р н е ц и а л ь н ы х у р а в н е н и й

Начальные условия

а11

а12

а13

а14

а21

а22

а23

а24

а31

а32

а33

а34

а41

а42

а43

а44

b0

b1

b2

b3

х0(0)

х1(0)

х2(0)

х3(0)

8

-2,4

1,4

1,6

-1,8

-2,6

-12

0,6

4,0

-0,8

-0,85

-0,1

0,2

0,4

1,2

1,0

-1,5

0,1

0,2

0

0,6

0

0

-0.8

5.1

Электротехническая система описывается заданной системой линейных дифференциальных уравнений с 4 искомыми функциями х0(t), x1(t),x2(t), x3(t):

Матрицы системы:

2. Решение системы дифференциальных уравнений, заданной в нормальной форме Коши

2.1 Теоретическое обоснование

Можно записать в виде матричного дифференциального уравнения:

или на основании правила дифференцирования матриц:

Совокупность решений системы дифференциальных уравнений будем искать в форме

з десь

- общее решение однородной системы дифференциальных уравнений

X(t) - частное решение неоднородной системы дифференциальных уравнений .

Общее решение однородной системы дифференциальных уравнений

Для определения общего решения системы дифференциальных уравнений необходимо:

  • найти собственные значения λi матрицы А, используя выражение:

  • найти переходную матрицу:

где Р – матрица, составленная из собственных векторов vi матрицы А, которые определяются из выражения:

Аvi = λi vi i = 1,2..n - одно из произвольных значений вектора-столбца (обычно принимают vi1 = 1)

Тогда причем - диагональная матрица.

Общее решение однородной системы дифференциальных уравнений будет иметь вид:

Частное решение неоднородной системы дифференциальных уравнений ищется:

Общее решение неоднородной системы дифференциальных уравнений тогда будет иметь вид:

В данной работе мы будем определять аналитические зависимости изменения переменных состояния системы численными методами с использованием переходной матрицы, а также с помощью специальных функций MATHCAD.

2.2 Теоретическое обоснование применения преобразования Лапласа

Классический метод решения системы дифференциальных уравнений высокого порядка связан с большими вычислительными затратами, особенно при определении частного решения неоднородной системы ( при вычислении интеграла). В этом случае целесообразно использовать преобразования Лапласа, что существенно упрощает вычисления и дает значительно большую обозримость решения. Можно отметить следующие преимущества метода преобразования Лапласа:

  1. Для решения системы дифференциальных уравнений методом преобразования Лапласа необходимо решить только одну-единственную систему алгебраических уравнений, а именно систему, определяющую изображение Xi(s) искомых функций хi(t).

  2. Начальные значения входят в эту систему с самого начала и поэтому учитываются автоматически, в то время как при применении классического метода предварительно необходимо найти сначала общие решения (для систем уравнений это весьма сложно) и затем подобрать постоянные интегрирования так, чтобы были удовлетворены начальные условия, что приводит к необходимости решения еще одной системы линейных уравнений. Часто встречающийся на практике случай нулевых начальных значений приводит при применении преобразования Лапласа к особенно простым вычислениям.

  3. Наконец, важное преимущество заключается в том, что каждая неизвестная функция может быть вычислена сама по себе, независимо от вычисления остальных неизвестных функций, что при использовании классическим методом при заданных начальных условиях в общем случае невозможно. Это преимущество особенно ценно, когда практический интерес представляет определение только одной-единственной, неизвестной, вычисление же остальных неизвестных необязательно.

2.3 Общее решение однородной системы

2.3.1 Определение аналитических зависимостей изменения переменных состояния системы с использованием переходной матрицы при заданных начальных условиях и отсутствии внешнего воздействия.

Вычисление собственных значений квадратной матрицы А:

Функция identity (4) создаёт единичную матрицу размером 4*4

С помощью символьного процессора можно вычислить аналитически значение переменной, при котором выражение обращается в ноль. Для этого:

  • Введите выражение.

  • Выделите переменную, относительно которой будет решаться уравнение, приравнивающее выражение к нулю.

  • Выберите в меню Symbolics (Символика) пункт Variable / Solve (Переменная / Решить) .

В нашем случае, чтобы найти значения λ, которые являются корнями характеристического уравнения запишем выражение в Mathcad.

Для вычисления собственных значений матрицы А можно применить и функцию eigenvals, ключевое слово float применяется вместе со значением точности вывода результата с плавающей точкой.

Как видно, характеристическое уравнение имеет 4 различных корня, которые являются характеристическими числами матрицы А. Каждому характеристическому числу соответствует свой собственный вектор. Характеристическому числу λ1 соответствует собственный вектор р11; р21; р31; р41; числу λ2 соответствует собственный вектор р12; р22; р32; р42, числу λ3 соответствует собственный вектор р13; р23; р33; р43 числу λ4 соответствует собственный вектор р14; р24; р34; р44.

Тогда система дифференциальных уравнений будет иметь 4 решения. Первое соответствует корню λ1. Второе решение соответствует корню λ2. Третье решение соответствует корню λ3.Четвёртое решение соответствует корню λ4.

Преобразующую матрицу Р определяем по матрице А, используя дополнительную функцию eigenvecs(A) — вычисляет матрицу, содержащую нормированные собственные векторы, соответствующие собственным значениям матрицы А; n-й столбец вычисляемой матрицы соответствует собственному вектору n-го собственного значения, вычисляемого eigenvals;

Для получения общего решения однородной системы дифференциальных уравнений необходимо определить по переходной матрице аналитическое выражение изменения независимых переменных системы.

Также построим график их изменения при заданных начальных условиях и отсутствии внешнего воздействия.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее