002-0034 (Экономические аспекты глобальных проблем), страница 7

2016-08-02СтудИзба

Описание файла

Документ из архива "Экономические аспекты глобальных проблем", который расположен в категории "". Всё это находится в предмете "экономическая теория" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "экономическая теория" в общих файлах.

Онлайн просмотр документа "002-0034"

Текст 7 страницы из документа "002-0034"

Важно также отметить, что в прошлом дейст­вительно наблюдались сильные корреляции меж­ду климатом и концентрацией СО2 в атмосфере24. На протяжении нескольких последних тысячеле­тий эта концентрация была довольно стабильной и составляла примерно 280 ppmv (280 молекул СО2 на 1 млн. молекул воздуха). Однако с начала интенсивного развития промышленности (при­мерно с середины прошлого столетия) эта кон­центрация начала экспоненциально расти и в на­стоящее время уже составляет около 360 ppmv. Только с 1980 по 1990 г. концентрация СО2 увели­чилась на 17 ppmv (с 337 до 354 ppmv)! Так же рез­ко возрастают концентрации и других парнико­вых газов, в первую очередь метана (за то же де­сятилетие с 1.57 до 1.72 ppmv)25.

При сохранении таких темпов роста уже при­близительно через 30 лет следует ожидать кон­центрацию парниковых газов в атмосфере, экви­валентную удвоению концентрации СОз (при этом концентрация собственно СО2 будет равна примерно 450 ppmv)26. В прошлом при такой кон­центрации парниковых газов (средний Плиоцен, 3-5 млн. лет назад) климат существенно отличал­ся от настоящего: среднеглобальная температура была на 4-5°С выше, отсутствовало оледенение Антарктиды, уровень океана был выше на не­сколько метров и т.п. Установление такого кли­мата за короткий промежуток времени в несколь­ко десятилетий привело бы к глобальной клима­тической катастрофе. Поэтому неудивительно, что в течение ряда последних лет климатические проблемы активно обсуждаются как в научных кругах, так и на межправительственном уровне при активном содействии ООН.

В IPCC также рассматриваются некоторые прогнозы будущего роста концентрации углекис­лого газа в атмосфере, существенно зависящие от выбора стратегии развития промышленности, энергетики, транспорта и т.п. Согласно этим сце­нариям, к концу следующего столетия можно ожидать возрастание концентрации углекислого газа от ~450 ppmv до ~950 ppmv! Вышеуказанные прогнозы основаны на достаточно надежных в настоящее время теориях и моделях углеродного цикла и данных мониторинга СО227. Как уже отме­чалось, ситуация обостряется вследствие возрас­тания антропогенного выброса и других парнико­вых газов - метана, фреонов и др.

Полезно также иметь в виду основные черты природного углеродного цикла (следить за угле­родом удобнее, чем за его соединениями типа уг­лекислого газа из-за химических превращений). Вообще говоря, в атмосфере содержится пример­но 750 гигатонн (Гт) углерода (здесь и далее вели­чины даны для периода 1980-1989 гг.), при этом обмен атмосферы с сушей (растительность, поч­ва) составляет около 60 Гт/год и с океаном около 90 Гт/год, то есть довольно интенсивен. Казалось бы, ежегодная антропогенная эмиссия, составля­ющая всего около 7.1 ± 1.1 Гт/год (5.5 ± 0.5 Гт/год только из-за сжигания угля и нефти и производст­ва цемента), при таком интенсивном обмене могла бы быть легко поглощена, например океаном (где уже содержится около 40000 Гт углерода). Од­нако - и это является установленным фактом - об­мен атмосфера - суша и атмосфера - океан весь­ма инерционен и соответствующие скорости аб­сорбции СОз могут меняться лишь довольно медленно (за столетия). Кроме того, в отличие от метана, озона и других газов, углекислый газ не вступает в химические атмосферные реакции, могущие эффективно выводить его из атмосфе­ры. Иначе говоря, природная "фабрика" по ути­лизации атмосферного углекислого газа не мо­жет быстро наращивать свои мощности, что и при­водит к накоплению углерода (СО2) в атмосфере (в указанный период в атмосфере ежегодно остава­лось около 3.2 Гт углерода). Поэтому, как показы­вают модели углеродного цикла28, накопившийся в атмосфере "лишний" СО2 приведет к установлению концентрации углекислого газа на новом, бо­лее высоком уровне, причем снижающемся край­не медленно (в течение многих столетий), даже при полном прекращении антропогенной эмиссии. Значит, возможно воздействовать на ситуацию только на стадии накопления СО2, а снижения его установившейся концентрации можно будет до­биться только если срочно принять меры по огра­ничению выбросов в атмосферу.

Однако введение любых таких ограничений требует весьма существенных (а зачастую и весь­ма дорогостоящих) перестроек в экономике. Так, наиболее "безопасный" (но вообще говоря мало реальный) из сценариев, рассмотренных IPCC (1592 с), в котором установившаяся концентрация равна 350 ppmv, предполагает, что дальнейшее удовлетворение растущих энергетических по­требностей человечества будет происходить в ос­новном за счет ядерной энергетики (в развитых странах), а рост энергетических потребностей в развивающихся странах будет незначительным. Но такая перспектива не слишком реальна.

Возникает естественный вопрос: насколько опасны возможные изменения климата при том или ином сценарии развития глобальной эконо­мики и каков безопасный уровень установившей­ся концентрации СО2? Очевидно, только ответив на эти вопросы, можно обоснованно выбрать стратегию по предотвращению возможных нега­тивных последствий изменения климата. К сожа­лению, определенность существующих климати­ческих прогнозов оставляет желать лучшего. Так, имеющиеся оценки увеличения среднеглобальной температуры и повышения уровня океа­на при удвоении содержания СО2 в атмосфере дают разброс в 1.5-4.5°С и 30-140 см, соответ­ственно29. Иначе говоря, по одним оценкам кли­мат почти не изменится, а по другим - может про­изойти чуть ли не климатическая катастрофа.

В свою очередь неудовлетворительная надеж­ность климатических прогнозов обусловлена сложностью описания процессов переноса сол­нечной и тепловой энергии в атмосфере и моде­лирования обратных связей в системе атмосфе­ра-суша-океан. Так, поглощение солнечной и тепловой радиации в ИК области имеет очень сложную зависимость от энергии, так как опреде­ляется колебательно-вращательными ИК-спектрами поглощения молекул водяного пара, угле­кислого газа, озона и др. (при моделировании радиационных процессов требуется учесть не­сколько десятков мегабайт информации о не­скольких сотнях тысяч спектральных линий газов). Большие трудности представляет и моде­лирование переноса солнечной энергии в облачной атмосфере из-за весьма неоднородной структуры облаков. Недавно было установлено, что существующие радиационные блоки клима­тических моделей (программы, где вычисляются параметры атмосферного радиационного тепло­обмена) могут давать рассогласование в расчетах потоков атмосферной радиации в десятки про­центов, тогда как изменения в потоках при удвое­нии СО2 - всего порядка одного процента30. В ре­зультате чисто научная проблема моделирования атмосферных радиационных процессов сдержи­вает решение важнейших практических проблем, имеющих общечеловеческую значимость.

Однако в последнее время, наконец, были ос­воены более адекватные методы теоретического исследования переноса атмосферной радиации31. Кроме того, бурно развиваются эксперименталь­ные исследования в этой области, в том числе с использованием спутников. В этой связи особо следует отметить американскую программу экс­периментально-теоретических исследований ат­мосферной радиации ARM (Atmospheric Radiation Measurements)32. В рамках этой программы на специальных полигонах проводятся уникальные натурные эксперименты по измерениям атмо­сферной радиации в различных климатических зонах. Все это позволяет надеяться на получение качественно новых методик радиационных рас­четов, обладающих достаточной точностью для целей прогнозирования климатических измене­ний уже в ближайшее десятилетие.

Очень важно также правильно учесть много­численные обратные связи в климатической сис­теме. Например, дополнительный разогрев атмо­сферы из-за парникового эффекта вызовет уве­личение испарения воды и приведет к еще большему разогреву вследствие поглощения ра­диации водяным паром. Кроме того, рост испаре­ния приведет к увеличению облачности. Это, с одной стороны, будет способствовать охлажде­нию атмосферы из-за отражения солнечной ра­диации облаками, а с другой - усилит разогрев вследствие экранирования тепловой радиации. (По этим причинам, как хорошо известно, в лет­ний, ясный, солнечный день теплее, чем в пасмур­ный, тогда как при отсутствии облаков ночи хо­лоднее.) В целом, как показывают расчеты, "из­начальный" парниковый эффект по причине подобных обратных связей будет увеличиваться в несколько раз. Неизвестен лишь точный коэф­фициент такого увеличения.

Для кардинального улучшения климатических прогнозов в настоящее время развернуты широ­комасштабные разработки в рамках Всемирной программы исследования климата ("World Climate Research Programme") и Международной геосферно-биосферной программы ("International Geosphere-Biosphere Programme"). Все это также позволяет надеяться на существенное улучшение климатических прогнозов в самом ближайшем будущем.

Однако уже сейчас существует возможность сравнивать различные факторы воздействия на климат с помощью понятия "радиационного фор­синга" (radiactive forcing). Опуская некоторые подробности, можно определить радиационный форсинг как характерное изменение потоков ра­диации из-за данного фактора, измеряемое в Вт/м2 (см. табл. 1).

Таблица 1. Радиационные форсинги (в Вт/м2) на насто­ящий момент в сравнении с серединой прошлого века от наиболее существенных климатообразующих факторов

CO2

СН4

N2O, фреоны

Озон

Аэро­золи

Солнечная радиация

1.5

0.5

0.5

0.5

-1.0

0.3

Источник: по данным IPCC.

Как следует из этой таблицы, суммарный фор­синг в настоящий момент составил около 2 Вт/м2, причем форсинг от увеличения СО2 доминирует. Как полагают многие специалисты по климату, это уже привело к увеличению среднеглобальной температуры примерно на 0.5°. Полезно также отметить, что форсинг от удвоения СО2 должен быть около 4.5 Вт/м2, то есть будет уже в не­сколько раз превышать все другие форсинги. Это хорошо иллюстрирует широко распространенное мнение о начале существенных климатических изменений и необходимости принятия безотлага­тельных мер по стабилизации климата.

ЭКОНОМИЧЕСКИЕ ПОСЛЕДСТВИЯ ИЗМЕНЕНИЯ КЛИМАТА

Из-за отмеченной выше существенной не­определенности климатических прогнозов все оценки возможных экономических последствий потепления климата также крайне неопределен­ны, но, по мнению авторов, все же полезны при достаточно осторожном с ними обращении. Здесь мы будем опираться в основном на результаты исследований IPCC33.

Для упрощения анализа обычно рассматрива­ются гипотетические ситуации при среднеглобальном увеличении температуры на 2.5 и 4°, что отвечает изменению климата при удвоении СО2 и реализации "наиболее вероятного" и "близкого к наиболее неблагоприятному" прогнозу климата соответственно. (Напомним, что такой климат может быть уже в ближайшие десятилетия.) Кратко опишем возможные последствия потеп­ления на различные секторы экономики.

Сельское хозяйство.

IPCC отмечает, что вследствие потепления возможный ущерб может возникнуть из-за уменьшения увлажнения почвы, увеличения количества вредителей растений и животных, а также вследствие стрессовых воз­действий жары. Кроме того, в одних регионах мо­жет возрасти эрозия почвы по причине увеличе­ния дождей, тогда как в других усилятся засухи.

Модели предсказывают, что в ряде регионов средних широт (например США) число засушли­вых лет может возрасти с 5% в настоящее время до 50 к 2050 г. Однако отмечаются и возможные положительные эффекты для экономики. Так, станет больше период времени, благоприятный для роста растений. Кроме того, ожидается уве­личение урожаев при росте концентрации СО2 из-за известного стимулирующего действия углекис­лого газа на фотосинтез растений. Согласно ла­бораторным экспериментам, удвоение концент­рации СО2 может на 1/3 увеличить урожайность риса, сои и других культур.

При сравнительно небольшом падении вало­вого продукта ожидаются существенные измене­ния на рынке продовольственных товаров. Так, даже при "очень неблагоприятных" сценариях (когда в большинстве развивающихся стран и быв­шем СССР урожай уменьшится на 5-40%) валовой продукт может уменьшиться всего на 0.5%, но цены возрастут на 40%! По причине этого роста цен только в США потребители будут ежегодно тратить на продовольствие на 40 млрд. долл. боль­ше, тогда как доходы фермеров возрастут всего на 19 млрд. долл. по сравнению с 1986 г.

В этом сценарии наибольшие потери ожида­ются для Китая (до 5% их валового продукта) и бывшего СССР. В другом, более оптимистичном сценарии, воздействие изменения климата на ми­ровое производство будет практически пренебре­жимо малым, причем некоторый негативный эф­фект в Канаде, Японии и Европе будет компенси­роваться ростом производства продовольствия в Австралии, Китае (?) и бывшем СССР. Ожидает­ся также, что риск голода возрастет с 640 млн. че­ловек до 680-940 млн. По некоторым оценкам, голод, косвенно связанный с потеплением клима­та, будет причиной смерти 900 млн. человек за пе­риод 2010-2030 гг. Следует отметить, что воздей­ствие климатических изменений на сельское хо­зяйство в разных регионах даже одной и той же страны будет проявляться различно.

Повышение уровня моря.

По прогнозам IPCC, ожидается повышение уровня моря примерно на 0.5 м к 2100 г., что наиболее серьезно скажется в прибрежных зонах и для небольших островов. В литературе обычно рассматривается три вида ущерба от повышения уровня моря: дополни­тельные капитальные затраты на берегоохранные сооружения; убытки, связанные с потерями прибрежных земель, затраты в результате более частых наводнений.

Так, по некоторым оценкам, капитальные за­траты в следующем столетии составят только для США от 73 до 111 млрд. долл. в расчете на повы­шение уровня на 1 м. Для всего мира повышение уровня моря на 0.5 м к концу столетия потребует вложений примерно в 1 млрд. долл. ежегодно.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее