183859 (Многомерный статистический анализ), страница 3

2016-08-02СтудИзба

Описание файла

Документ из архива "Многомерный статистический анализ", который расположен в категории "". Всё это находится в предмете "экономико-математическое моделирование" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "экономико-математическое моделирование" в общих файлах.

Онлайн просмотр документа "183859"

Текст 3 страницы из документа "183859"

Основной показатель качества регрессионной модели. Одни и те же данные можно обрабатывать различными способами. Показателем отклонений данных от модели служит остаточная сумма квадратов SS. Чем этот показатель меньше, тем приближение лучше, значит, и модель лучше описывает реальные данные. Однако это рассуждение годится только для моделей с одинаковым числом параметров. Ведь если добавляется новый параметр, по которому можно минимизировать, то и минимум, как правило, оказывается меньше.

В качестве основного показателя качества регрессионной модели используют оценку остаточной дисперсии

скорректированную на число m параметров, оцениваемых по наблюдаемым данным. В случае линейной прогностической модели, рассмотренной в первом пункте настоящей главы, оценка остаточной дисперсии имеет вид

поскольку число оцениваемых параметров m=2.

Почему эта формула отличается от приведенной в первом пункте? Там в знаменателе n, а здесь - (n-2). Дело в том, что в первом пункте рассмотрена непараметрическая теория при большом объеме данных (при , а при безграничном возрастании n разница между n и (n-2) сходит на нет.

А вот при подборе вида модели знаменатель дроби, оценивающей остаточную дисперсию, приходится корректировать на число параметров. Если этого не делать, то придется заключить, что многочлен второй степени лучше соответствует данным, чем линейная функция, многочлен третьей степени лучше приближает исходные данные, чем многочлен второй степени, и т.д. В конце концов доходим до многочлена степени (n-1) с n коэффициентами, который проходит через все заданные точки. Но его прогностические возможности, скорее всего, существенно меньше, чем у линейной функции. Излишнее усложнение эконометрических моделей вредно.

Типовое поведение скорректированной оценки остаточной дисперсии

в зависимости от параметра m в случае расширяющейся системы эконометрических моделей выглядит так. Сначала наблюдаем заметное убывание. Затем оценка остаточной дисперсии колеблется около некоторой константы (теоретического значения дисперсии погрешности).

Поясним ситуацию на примере эконометрической модели в виде многочлена

Пусть эта модель справедлива при При в скорректированной оценке остаточной дисперсии учитываются не только погрешности измерений, но и соответствующие (старшие) члены многочлена (предполагаем, что коэффициенты при них отличны от 0). При имеем

Следовательно, скорректированная оценка остаточной дисперсии будет колебаться около указанного предела. Поэтому в качестве оценки неизвестной эконометрику степени многочлена (полинома) можно использовать первый локальный минимум скорректированной оценки остаточной дисперсии, т.е.

В работе [3] найдено предельное распределение этой оценки степени многочлена.

Теорема. При справедливости некоторых условий регулярности

где

Таким образом, предельное распределение оценки m* степени многочлена (полинома) является геометрическим. Это означает, в частности, что оценка не является состоятельной. При этом вероятность получить меньшее значение, чем истинное, исчезающе мала. Далее имеем:

Разработаны и иные методы оценивания неизвестной степени многочлена, например, с помощью многократного применения процедуры проверки адекватности регрессионной зависимости с помощью статистики Фишера (см. работу [3]). Предельное поведение оценок - таково же, как в приведенной выше теореме, только значение параметра иное.

Линейный и непараметрические парные коэффициенты корреляции. Термин "корреляция" означает "связь". В эконометрике этот термин обычно используется в сочетании "коэффициенты корреляции".

Рассмотрим способы измерения связи между двумя случайными переменными. Пусть исходными данными является набор случайных векторов Коэффициентом корреляции, более подробно, линейным парным коэффициентом корреляции К. Пирсона называется (см. приложение 1 в конце настоящей книги)

Если rn = 1, то причем a>0. Если же rn = -1, то причем a<0. Таким образом, близость коэффициента корреляции к 1 (по абсолютной величине) говорит о достаточно тесной линейной связи.

Коэффициенты корреляции типа rn используются во многих алгоритмах многомерного статистического анализа эконометрических данных. В теоретических рассмотрениях часто считают, что случайный вектор имеет многомерное нормальное распределение. Распределения реальных данных, как правило, отличны от нормальных (см. главу 4). Почему же распространено представление о многомерном нормальном распределении? Дело в том, что теория в этом случае проще. В частности, равенство 0 теоретического коэффициента корреляции (см. приложение 1) эквивалентно независимости случайных величин. Поэтому проверка независимости сводится к проверке статистической гипотезы о равенстве 0 теоретического коэффициента корреляции. Эта гипотеза принимается, если , где - некоторое граничное значение, зависящее от объема выборки n и уровня значимости .

Если случайные вектора независимы и одинаково распределены, то выборочный коэффициент корреляции сходится к теоретическому при безграничном возрастании объема выборки:

(сходимость по вероятности).

Более того, выборочный коэффициент корреляции является асимптотически нормальным. Это означает, что

где - функция стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1, а - асимптотическая дисперсия выборочного коэффициента корреляции. Она имеет довольно сложное выражение, приведенное в монографии [4, с.393]:

Здесь под понимаются теоретические центральные моменты порядка k и m, а именно,

(см. приложение 1 в конце книги).

Для расчета непараметрического коэффициента ранговой корреляции Спирмена необходимо сделать следующее. Для каждого xi рассчитать его ранг ri в вариационном ряду, построенном по выборке Для каждого yi рассчитать его ранг qi в вариационном ряду, построенном по выборке Для набора из n пар вычислить (линейный) коэффициент корреляции. Он называется коэффициентом ранговой корреляции, поскольку определяется через ранги. В качестве примера рассмотрим данные из табл.2 (см. монографию [5]).

Табл.2. Данные для расчета коэффициентов корреляции

i

1

2

3

4

5

xi

5

10

15

20

25

yi

6

7

30

81

300

ri

1

2

3

4

5

qi

1

2

3

4

5

Для данных табл.2 коэффициент линейной корреляции равен 0,83, непосредственной линейной связи нет. А вот коэффициент ранговой корреляции равен 1, поскольку увеличение одной переменной однозначно соответствует увеличению другой переменной. Во многих экономических задачах, например, при выборе инвестиционных проектов для осуществления, достаточно именно монотонной зависимости одной переменной от другой.

Поскольку суммы рангов и их квадратов нетрудно подсчитать, то коэффициент ранговой корреляции Спирмена равен

Отметим, что коэффициент ранговой корреляции Спирмена остается постоянным при любом строго возрастающем преобразовании шкалы измерения результатов наблюдений. Другими словами, он является адекватным в порядковой шкале (см. главу 3), как и другие ранговые статистики (см. статистики Вилкоксона, Смирнова, типа омега-квадрат для проверки однородности независимых выборок в главе 4 и общее обсуждение в главе 8).

Широко используется также коэффициент ранговой корреляции Кендалла, коэффициент ранговой конкордации Кендалла и Б. Смита и др. Наиболее подробное обсуждение этой тематики содержится в монографии [6], необходимые для практических расчетов таблицы имеются в справочнике [1]. Дискуссия о выборе вида коэффициентов корреляции продолжается до настоящего времени [5].

Непараметрическая регрессия. Рассмотрим общее понятие регрессии как условного математического ожидания. Пусть случайный вектор имеет плотность p(x,y). Как известно из любого курса теории вероятностей, плотность условного распределения при условии имеет вид

Условное математическое ожидание, т.е. регрессионная зависимость, имеет вид

Таким образом, для нахождения оценок регрессионной зависимости достаточно найти оценки совместной плотности распределения вероятности такие, что

при Тогда непараметрическая оценка регрессионной зависимости

при будет состоятельной оценкой регрессии как условного математического ожидания

Общий подход к построению непараметрических оценок плотности распределения вероятностей развит в главе 8 ниже.

Основные понятия теории классификации

При внедрении современных эконометрических и статистических методов в практику технико-экономических исследований, при разработке соответствующих программных продуктов невозможно обойтись без классификации этих методов. Естественно исходить из вида обрабатываемых данных. В соответствии с современными воззрениями делим эконометрику и прикладную статистику на четыре области:

- статистика случайных величин (одномерная статистика);

- многомерный статистический анализ;

- статистика временных рядов и случайных величин;

- статистика объектов нечисловой природы.

В первой области элемент выборки - число, во второй - вектор, в третьей - функция, в четвертой - объект нечисловой природы. Термин "объект нечисловой природы" относится к элементам математического пространства, не являющегося векторным (линейным). Их нельзя складывать, умножать на числа, в отличие от чисел, векторов и функций. Примерами являются бинарные отношения (упорядочения, разбиения на классы, толерантности); множества, нечеткие множества; результаты измерений в номинальной и порядковой шкалах (т.е. по качественным признакам), в частности булевы вектора; вектора разнотипных признаков; тексты и т.д. (подробнее см., например, главу 8).

В настоящем пункте рассматривается важное направление эконометрики и прикладной статистики – математические методы классификации. Основная их часть относится к статистике объектов нечисловой природы, а именно, методы классификации, основанные на расстояниях между объектами.

Основные направления в математической теории классификации. Какие научные исследования относить к этой теории? Исходя из потребностей специалиста, применяющего математические методы классификации, целесообразно принять, что сюда входят исследования, во-первых, отнесенные самими авторами к этой теории; во вторых, связанные с ней общностью тематики, хотя бы их авторы и не упоминали термин «классификация». Это предполагает ее сложную внутреннюю структуру.

В литературных источниках наряду с термином «классификация» в близких смыслах используются термины «группировка», «распознавание образов», «диагностика», «дискриминация», «сортировка» и др. Терминологический разнобой связан, прежде всего, с традициями научных кланов, к которым относятся авторы публикаций, а также с внутренним делением самой теории классификации.

В научных исследованиях по современной теории классификации можно выделить два относительно самостоятельных направления. Одно из них опирается на опыт таких наук, как биология, география, геология, и таких прикладных областей, как ведение классификаторов продукции и библиотечное дело. Типичные объекты рассмотрения - классификация химических элементов (таблица Д.И. Менделеева), биологическая систематика, универсальная десятичная классификация публикаций (УДК), классификатор товаров на основе штрих-кодов.

Другое направление опирается на опыт технических исследований, экономики, маркетинговых исследований, социологии, медицины. Типичные задачи - техническая и медицинская диагностика, а также, например, разбиение на группы отраслей промышленности, тесно связанных между собой, выделение групп однородной продукции. Обычно используются такие термины, как «распознавание образов» или «дискриминантный анализ». Это направление обычно опирается на математические модели; для проведения расчетов интенсивно используется ЭВМ. Однако относить его к математике столь же нецелесообразно, как астрономию или квантовую механику. Рассматриваемые математические модели можно и нужно изучать на формальном уровне, и такие исследования проводятся. Но направление в целом сконцентрировано на решении конкретных задач прикладных областей и вносит вклад в технические или экономические науки, медицину, социологию, но, как правило, не в математику. Использование математических методов как инструмента исследования нельзя относить к чистой математике.

В 60-х годах XX века внутри прикладной статистики достаточно четко оформилась область, посвященная методам классификации. Несколько модифицируя формулировки М. Дж. Кендалла и А. Стьюарта 1966 г. (см. русский перевод [7, с.437]), в теории классификации выделим три подобласти: дискриминация (дискриминантный анализ), кластеризация (кластер-анализ), группировка. Опишем эти подобласти.

В дискриминантном анализе классы предполагаются заданными - плотностями вероятностей или обучающими выборками. Задача состоит в том, чтобы вновь поступающий объект отнести в один из этих классов. У понятия «дискриминация» имеется много синонимов: диагностика, распознавание образов с учителем, автоматическая классификация с учителем, статистическая классификация и т.д.

При кластеризации и группировке целью является выявление и выделение классов. Синонимы: построение классификации, распознавание образов без учителя, автоматическая классификация без учителя, таксономия и др. Задача кластер-анализа состоит в выяснении по эмпирическим данным, насколько элементы "группируются" или распадаются на изолированные "скопления", "кластеры"(от cluster (англ.) - гроздь, скопление). Иными словами, задача - выявление естественного разбиения на классы, свободного от субъективизма исследователя, а цель - выделение групп однородных объектов, сходных между собой, при резком отличии этих групп друг от друга.

При группировке, наоборот, «мы хотим разбить элементы на группы независимо от того, естественны ли границы разбиения или нет» [7, с.437]. Цель по-прежнему состоит в выявлении групп однородных объектов, сходных между собой (как в кластер-анализе), однако «соседние» группы могут не иметь резких различий (в отличие от кластер-анализа). Границы между группами условны, не являются естественными, зависят от субъективизма исследователя. Аналогично при лесоустройстве проведение просек (границ участков) зависит от специалистов лесного ведомства, а не от свойств леса.

Задачи кластеризации и группировки принципиально различны, хотя для их решения могут применяться одни и те же алгоритмы. Важная для практической деятельности проблема состоит в том, чтобы понять, разрешима ли задача кластер-анализа для конкретных данных или возможна только их группировка, поскольку они достаточно однородны и не разбиваются на резко разделяющиеся между собой кластеры.

Как правило, в математических задачах кластеризации и группировки основное - выбор метрики, расстояния между объектами, меры близости, сходства, различия. Хорошо известно, что для любого заданного разбиения объектов на группы и любого > 0 можно указать метрику такую, что расстояния между объектами из одной группы будут меньше , а между объектами из разных групп - больше 1/. Тогда любой разумный алгоритм кластеризации даст именно заданное разбиение.

Ситуация осложняется использованием одного и того же термина в разных смыслах. Термином "классификация" (и термином "диагностика") обозначают, по крайней мере, три разные вещи: процедуру построения классификации (и выделение классов, используемых при диагностике), построенную классификацию (систему выделенных классов) и процедуру ее использования (правила отнесения вновь поступающего объекта к одному из ранее выделенных классов). Другими словами, имеем естественную триаду: построение – изучение – использование классификации.

Как уже отмечалось, для построения системы диагностических классов используют разнообразные методы кластерного анализа и группировки объектов. Наименее известен второй член триады – изучение отношений эквивалентности, полученных в результате построения системы диагностических классов. Статистический анализ полученных, в частности экспертами, отношений эквивалентности - часть статистики бинарных отношений и тем самым - статистики объектов нечисловой природы. Помимо общих результатов этой области эконометрики и прикладной статистики, представляют интерес частные результаты, полученные специально для отношений эквивалентности (см. главу 8)).

Диагностика в узком смысле слова (процедура использования классификации, т.е. отнесения вновь поступающего объекта к одному из выделенных ранее классов) - предмет дискриминантного анализа. Отметим, что с точки зрения статистики объектов нечисловой природы дискриминантный анализ является частным случаем общей схемы регрессионного анализа, соответствующим ситуации, когда зависимая переменная принимает конечное число значений, а именно - номера классов, а вместо квадрата разности стоит функция потерь от неправильной классификации. Однако есть ряд специфических постановок, выделяющих задачи диагностики среди всех регрессионных задач.

О построении диагностических правил. Начнем с обсуждения одного распространенного заблуждения. Иногда рекомендуют сначала построить систему диагностических классов, а потом в каждом диагностическом классе отдельно проводить регрессионный анализ (в классическом смысле) или применять иные методы многомерного статистического анализа. Однако обычно забывают, что при этом нельзя опираться на вероятностную модель многомерного нормального распределения, так как распределение результатов наблюдений, попавших в определенный кластер, будет отнюдь не нормальным, а усеченным нормальным (усечение определяется границами кластера).

Процедуры построения диагностических правил делятся на вероятностные и детерминированные. К первым относятся так называемые задачи расщепления смесей. В них предполагается, что распределение вновь поступающего случайного элемента является смесью вероятностных законов, соответствующих диагностическим классам. Как и при выборе степени полинома в регрессии (см. предыдущий пункт настоящей главы), при анализе реальных социально-экономических данных встает вопрос об оценке числа элементов смеси, т.е. числа диагностических классов. Были изучены результаты применения обычно рекомендуемого критерия Уилкса для оценки числа элементов смеси. Оказалось (см. статью [8]), что оценка с помощью критерия Уилкса не является состоятельной, асимптотическое распределение этой оценки – геометрическое, как и в случае задачи восстановления зависимости в регрессионном анализе (см. выше). Итак, продемонстрирована несостоятельность обычно используемых оценок. Для получения состоятельных оценок достаточно связать уровень значимости в критерии Уилкса с объемом выборки, как это было предложено и для задач регрессии.

Как уже отмечалось, задачи построения системы диагностических классов целесообразно разбить на два типа: с четко разделенными кластерами (задачи кластер-анализа) и с условными границами, непрерывно переходящими друг в друга классами (задачи группировки). Такое деление полезно, хотя в обоих случаях могут применяться одинаковые алгоритмы. Сколько же существует алгоритмов построения системы диагностических правил? Иногда называют то или иное число. На самом же деле их бесконечно много, в чем нетрудно убедиться.

Действительно, рассмотрим один определенный алгоритм - алгоритм средней связи. Он основан на использовании некоторой меры близости d(x,y) между объектами x и у. Как он работает? На первом шаге каждый объект рассматривается как отдельный кластер. На каждом следующем шаге объединяются две ближайших кластера. Расстояние между объектами рассчитывается как средняя связь (отсюда и название алгоритма), т.е. как среднее арифметическое расстояний между парами объектов, один из которых входит в первый кластер, а другой - во второй. В конце концов все объекты объединяются вместе, и результат работы алгоритма представляет собой дерево последовательных объединений (в терминах теории графов), или "Дендрограмму". Из нее можно выделить кластеры разными способами. Один подход - исходя из заданного числа кластеров. Другой - из соображений предметной области. Третий - исходя из устойчивости (если разбиение долго не менялось при возрастании порога объединения - значит оно отражает реальность). И т.д.

К алгоритму средней связи естественно сразу добавить алгоритм ближайшего соседа (когда расстоянием между кластерами называется минимальное из расстояний между парами объектов, один из которых входит в первый кластер, а другой - во второй) и алгоритм дальнего соседа (когда расстоянием между кластерами называется максимальное из расстояний между парами объектов, один из которых входит в первый кластер, а другой - во второй).

Каждый из трех описанных алгоритмов (средней связи, ближайшего соседа, дальнего соседа), как легко проверить, порождает бесконечное (континуальное) семейство алгоритмов кластер-анализа. Дело в том, что величина d a(x,y), a>0, также является мерой близости между x и у и порождает новый алгоритм. Если параметр а пробегает отрезок, то получается бесконечно много алгоритмов классификации.

Каким из них пользоваться при обработке данных? Дело осложняется тем, что практически в любом пространстве данных мер близости различных видов существует весьма много. Именно в связи с обсуждаемой проблемой следует указать на принципиальное различие между кластер-анализом и задачами группировки.

Если классы реальны, естественны, существуют на самом деле, четко отделены друг от друга, то любой алгоритм кластер-анализа их выделит. Следовательно, в качестве критерия естественности классификации следует рассматривать устойчивость относительно выбора алгоритма кластер-анализа.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее