85643 (Интерполяция функций)

2016-07-28СтудИзба

Описание файла

Документ из архива "Интерполяция функций", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "лабораторные работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85643"

Текст из документа "85643"

http://monax.ru/order/ - рефераты на заказ (более 2300 авторов в 450 городах СНГ).

Министерство образования Российской Федерации.

Хабаровский государственный Технический Университет.

Кафедра «Прикладная математика и информатика»

Лабораторная работа №4

по дисциплине «Вычислительные методы линейной алгебры».

Интерполяция функций.

Вариант 4

Выполнил: ст. гр. ПМ 11 Крамарев Д. В.

Проверил: д.ф.-м.н., проф. Чехонин К.А.

Хабаровск 2003

Задание.

1) Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Вычислить значения в точке х=1.25.

xi

1

1.5

2

2.5

3

3.5

yi

0.5

2.2

2

1.8

0.5

2.25

2) Построить интерполяционный многочлен Лагранжа. Начертить график и отметить на нем узлы интерполяции. Вычислить значение в точке х=1.2.

xi

0

0.25

1.25

2.125

3.25

yi

5.0

4.6

5.7

5.017

4.333

3) Выполнить интерполяцию сплайнами третьей степени. Построить график и отметить на нем узлы интерполяции.

xi

7

9

13

yi

2

-2

3

Постановка задачи интерполяция.

Пусть известные значения функции образуют следующую таблицу:

x0

x1

x2

...

Xn-1

xn

y0

y1

y2

...

yn-1

yn

При этом требуется получить значение функции f в точке x, принадлежащей
отрезку [x0..xn] но не совпадающей ни с одним значением xi.Часто при этом не известно аналитическое выражение функции f(x), или оно не пригодно для вычислений.

В этих случаях используется прием построения приближающей функции F(x), которая очень близка к f(x) и совпадает с ней в точках x0, x1, x2,... xn. При этом нахождение приближенной функции называется интерполяцией, а точки x0,x1,x2,...xn - узлами интерполяции. Обычно интерполирующую ищут в виде полинома n степени:

Pn(x)=a0xn+a1xn-1+a2xn-2+...+an-1x+an

Для каждого набора точек имеется только один интерполяционный многочлен, степени не больше n. Однозначно определенный многочлен может быть представлен в различных видах. Рассмотрим интерполяционный многочлен Ньютона и Лагранжа.

Интерполяционная формула Лагранжа.

Формула Лагранжа является наиболее общей, может применяться к таким узлам интерполяции, что расстояние между соседними узлами не постоянная величина.

Построим интерполяционный полином Ln(x) степени не больше n, и для которого выполняются условия Ln(xi)=yi . Запишем его в виде суммы:

Ln(x)=l0(x)+ l1(x)+ l2(x)+...+ ln(x), (1)

где lk(xi)= yi, если i=k, и lk(xi)= 0, если i≠k;

Тогда многочлен lk(x) имеет следующий вид:

l

(x-x0) (x-x1)...(x-xi-1) (x-xi+1) (x-xn)

(xi-x0)(xi-x1)...(xi-xi-1)(xi-xi+1)(xi-xn)

k(x)= (2)

Подставим (2) в (1) и перепишем Ln(x) в виде:

i ≠ j

Если функция f(x), подлежащая интерполяции, дифференцируема больше чем n+1 раз, то погрешность интерполяции оценивается следующим образом:

где0<θ<1 (3)

Интерполяционная формула Ньютона.

Построение интерполяционного многочлена в форме Ньютона применяется главным образом когда разность xi+1-xi=h постоянна для всех значений x=0..n-1.

Конечная разность k-го порядка:

Δyi=yi+1-yi

Δ2yi= Δyi+1- Δyi=yi+2-2yi+1+yi

………………………………

Δkyi=yi+k-kyi+1-k+k(k-1)/2!*yi+k-2+...+(-1)kyi

Будем искать интерполяционный многочлен в виде:

Pn(x)=a0+a1(x-x0)+a2(x-x0)(x-x1)+...+an(x-x0)(x-x1)...(x-xn-1)

Найдем значения коэффициентов a0, a1, a2, ...,an:

Полагая x=x0, находим a0=P(x0)=y0;

Далее подставляя значения x1, x2, ...,xn получаем:

a1=Δy0/h

a22y0/2!h2

a33y0/3!h3

....................

anny0/n!hn

Таким образом:
Pn(x)=y0+ Δy0/h*(x-x0)+ Δ2y0/2!h2*(x-x0)(x-x1)+...+ Δny0/n!hn*(x-x0)(x-x1)...(x-xn-1) (1)

Практически формула (1) применяется в несколько ином виде:

Возьмем: t=(x-x0)/h, тогда x=x0+th и формула (1) переписывается как:

Pn(x)=y0+tΔy0+t(t-1)/2! Δ2y0+...+t(t-1)...(t-n+1)/n!Δny0 (2)

Формула (2) называется интерполяционной формулой Ньютона.

Погрешность метода Ньютона оценивается следующим образом:

(3)

Интерполяция сплайнами.

При большом количестве узлов интерполяции сильно возрастает степень интерполяционных многочленов, что делает их неудобными для проведения вычислений.

Высокой степени многочленов можно избежать, разбив отрезок интерполирования на несколько частей, с построением в каждой части своего интерполяционного полинома. Такой метод называется интерполяцией сплайнами. Наиболее распространенным является построение на каждом отрезке [xi, xi+1], i=0..n-1 кубической функции. При этом сплайн – кусочная функция, на каждом отрезке заданная кубической функцией, является кусочно-непрерывной, вместе со своими первой и второй производной.

Будем искать кубический сплайн на каждом из частичных отрезков [xi, xi+1] в виде:

, где ai,bi,ci,di – неизвестные.

Из того что Si(xi)=yi получим:

В силу непрерывности потребуем совпадения значений в узлах, т.е.:

,i=0..n-1; (1)

Также потребуем совпадения значений первой и второй производной:

,i=0..n-2; (2)

,i=0..n-2; (3)

Из (1) получим n линейных уравнений с 3n неизвестными

,i=0..n-1; (1*)

Из (2) и (3) получим 2(n-1) линейных уравнений с теми же неизвестными:

,i=0..n-1; (2*)

,i=1..n-1; (3*)

Недостающие два уравнения определим следующим образом. Предположим, что в точках х0 и хn производная равна нулю и получим еще два уравнения. Получим систему из 3*n линейных уравнений с 3*n неизвестными. Решим ее любым из методов и построим интерполяционную функцию, такую что на отрезке [xi, xi+1] она равна Si.

Метод Лагранжа

procedure TForm1.Button1Click(Sender: TObject);

type tip=array of real;

var x,y:tip;

i,j,n:byte;

p,s,xx:real;

begin

n:=edt.Count;

setlength(x,n);

setlength(y,n);

for i:=0 to n-1 do x[i]:=edt.massiv[i];edt.Lines.Delete(0);

for i:=0 to n-1 do y[i]:=edt.massiv[i];edt.Lines.Delete(0);

xx:=strtofloat(edt.Text);

edt.Lines.Delete(0);

s:=0;

for i:=0 to n-1 do

begin

p:=1;

for j:=0 to n-1 do if i<>j then p:=p*(xx-x[j])/(x[i]-x[j]);

p:=p*y[i];

s:=s+p;

end;

edt.writer('',1);

edt.writer('',s,1);

end;

Сплайн интерполяция (программа составляет систему линейных уравнений, решая которую находим коэффициенты кубических сплайнов).

procedure TForm1.Button1Click(Sender: TObject);

var b,c,d,x,y:array of real;

urm:array of array of real;

i,j,k,n :byte;

begin

n:=edt.Count;

setlength(x,n);setlength(y,n);

for i:=0 to n-1 do x[i]:=edt.massiv[i];edt.Lines.Delete(0);

for i:=0 to n-1 do y[i]:=edt.massiv[i];edt.Lines.Delete(0);

setlength(b,n-1);setlength(c,n-1);setlength(d,n-1);

setlength(urm,3*(n-1),3*(n-1)+1);

for i:=0 to 3*(n-1)-1 do

for j:=0 to 3*(n-1) do urm[i,j]:=0;

for i:=0 to n-1 do edt.writer(' ',y[i],0);

for i:=0 to n-2 do

begin

urm[i,3*i+0]:=x[i+1]-x[i];

urm[i,3*i+1]:=(x[i+1]-x[i])*(x[i+1]-x[i]);

urm[i,3*i+2]:=(x[i+1]-x[i])*(x[i+1]-x[i])*(x[i+1]-x[i]);

urm[i,3*(n-1)]:=y[i+1]-y[i];

end;

for i:=0 to n-3 do

begin

urm[i+n-1,3*i+0]:=1;

urm[i+n-1,3*i+1]:=2*(x[i+1]-x[i]);

urm[i+n-1,3*i+2]:=3*(x[i+1]-x[i])*(x[i+1]-x[i]);

urm[i+n-1,3*i+3]:=-1;

end;

for i:=0 to n-3 do

begin

urm[i+2*n-3,3*i+1]:=1;

urm[i+2*n-3,3*i+2]:=3*(x[i+1]-x[i]);

urm[i+2*n-3,3*i+4]:=-1;

end;

urm[3*n-5,0]:=1; urm[3*n-5,3*(n-1)]:=0;

urm[3*n-4,3*(n-1)-3]:=1;urm[i+2*n-3,3*(n-1)-2]:=2*(y[n-1]-y[n-2])]

urm[3*n-4,3*(n-1)-1]:=3*(y[n-1]-y[n-2]) *(y[n-1]-y[n-2]);

urm[i+2*n-3,3*(n-1)]:=0

for i:=0 to 3*(n-1)-1 do

begin

edt.writer('',1);

for j:=0 to 3*(n-1) do edt.writer(' ',urm[i,j],0);

end;

end;

Выполнить интерполяцию сплайнами третьей степени. Построить график и отметить на нем узлы интерполяции.

xi

7

9

13

yi

2

-2

3

Решение.

Будем искать кубический сплайн на каждом из частичных отрезков [xi, xi+1], i=0..2 в виде:

, где ai,bi,ci,di – неизвестные.

Из того что Si(xi)=yi получим:

В соответствии с теоретическим положениями изложенными выше, составим систему линейных уравнений, матрица которой будет иметь вид:

При этом мы потребовали равенства производной нулю.

Решая систему уравнений получим вектор решений [b1,c1,d1,b2,c2,d2]:

Подставляя в уравнение значения b1,c1,d1, получим на отрезке [7..9]:

Если выражение упростить то:

Аналогично подставляя в уравнение значения b2,c2,d2, получим на отрезке [9..13]:

или

График имеет вид:

Метод Ньютона

procedure TForm1.Button1Click(Sender: TObject);

type tip=array of real;

var x,y:tip;

i,j,n:byte;

p,s,xx,t,h:real;

kp:array of array of real;

begin

n:=edt.Count;

setlength(x,n);

setlength(y,n);

for i:=0 to n-1 do x[i]:=edt.massiv[i];edt.Lines.Delete(0);

for i:=0 to n-1 do y[i]:=edt.massiv[i];edt.Lines.Delete(0);

xx:=strtofloat(edt.Text);

edt.Lines.Delete(0);

setlength(kp,n,n);

for i:=0 to n-1 do for j:=0 to n-1 do kp[i,j]:=0;

for i:=0 to n-1 do kp[0,i]:=y[i];

for i:= 1 to n-1 do

for j:=0 to n-i-1 do

kp[i,j]:=kp[i-1,j+1]-kp[i-1,j];

for i:= 0 to n-1 do

begin

for j:=0 to n-1 do edt.writer(' ',kp[i,j],0);

edt.writer('',1);

end;

edt.writer('',1);

h:=0.5;

t:=(xx-x[0])/h;

s:=y[0];

for i:=1 to n-1 do

begin

p:=1;

for j:=0 to i-1 do p:=p*(t-j)/(j+1);

s:=s+p*kp[i,0];

end;

edt.writer('',s,1);;

end;

Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Вычислить значение функции в точке х=1.25.

xi

1

1.5

2

2.5

3

3.5

yi

0.5

2.2

2

1.8

0.5

2.25

Решение.

Построим таблицу конечных разностей в виде матрицы:

Воспользуемся интерполяционной формулой Ньютона:

Pn(x)=y0+tΔy0+t(t-1)/2! Δ2y0+...+t(t-1)...(t-n+1)/n!Δny0

Подставив значения получим многочлен пятой степени, упростив который получим:

P5(x)=2.2x5-24x4+101.783x3-20.2x2+211.417x-80.7

Вычислим значение функции в точке x=1.25; P(1.25)=2.0488;

График функции имеет вид:

Построить интерполяционный многочлен Лагранжа. Начертить график и отметить на нем узлы интерполяции. Вычислить значение в точке х=1.2.

xi

0

0.25

1.25

2.125

3.25

yi

5.0

4.6

5.7

5.017

4.333

Решение.

Построим интерполяционный многочлен Лагранжа L4(x), подставив значения из таблицы в формулу:

Напишем программу и вычислим значение многочлена в точке х=1.2:

L4(1.2)=5.657;

Полученный многочлен имеет четвертую степень. Упростим его и получим:

Построим график полученного полинома:

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее