165777 (Жидкофазное каталитическое окисление фенольных соединений)

2016-08-02СтудИзба

Описание файла

Документ из архива "Жидкофазное каталитическое окисление фенольных соединений", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "химия" в общих файлах.

Онлайн просмотр документа "165777"

Текст из документа "165777"

ЖИДКОФАЗНОЕ КАТАЛИТИЧЕСКОЕ ОКИСЛЕНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ

ВВЕДЕНИЕ

Непрерывный рост и развитие промышленного сектора экономики приводит к постоянному увеличению загрязнения окружающей среды. Одну из наиболее высоких экологических нагрузок испытывают на себе водные ресурсы, причем все большее количество высокотоксичных соединений попадает в акватории водных бассейнов, используемых человеком для хозяйственно-бытовых нужд. Поэтому первостепенной задачей современной экологии является решение проблемы загрязнения водных ресурсов высокотоксичными органическими соединениями.

Фенол и его гомологи являются трудно деструктирующимися соединениями, ингибирующими биосинтез микроорганизмов, что значительно затрудняет самоочистку водных объектов. Так, минимальные токсические дозы, уменьшающие на 50% количество микроорганизмов, обеспечивающих обезвреживание опасных соединений в воде, для фенола, гидрохинона и катехина составляют всего лишь 22,1 мг/л [1], 0,08 мг/л [2], 31,8 мг/л [2], соответственно. Таким образом, попадание в водоем даже незначительного количества фенольных соединений приводит к уменьшению способности водного объекта к саморегенерации с помощью имеющегося геобиоценоза и невозможности в дальнейшем дезактивации других загрязнений. Кроме того, фенол и его производные обладают высокой токсичностью для человека и относятся к высоко опасным веществам 2-го класса опасности [3], а содержание фенола в питьевой воде не должно превышать ПДК 0,001 мг/л [4].

В настоящее время основными загрязнителями водных ресурсов фенольными соединениями являются химическая, целлюлозно-бумажная, текстильная и нефтехимическая промышленности. Причем на долю целлюлозно-бумажной промышленности приходится более трети от общего объема выбросов фенольных соединений. По данным водного кадастра средневзвешенный годовой выброс фенольных соединений в поверхностные воды Российской Федерации уменьшился с 250 т/год до 45 тон/год с 1991 г. по 2004 г. и стабилизировался на значении 45-50 т/год в 2004-2005 годах, но, несмотря на снижение, уровень загрязнения водных объектов остается достаточно высоким. В 2006 году ожидается увеличение средневзвешенного годового выброса фенольных соединений в несколько раз, что связано с поступлением большого количества бензола, фенола и других ядовитых соединений в акваторию р. Амур.

Для удаления фенольных соединений в настоящее время применяются: экстракция, сорбционные, мембранные и биологические методы очистки [5-8], однако ни один из вышеуказанных методов не позволяет осуществлять эффективное удаление фенола, что связано с недостаточной полнотой очистки, большим количеством побочных продуктов, высокой энергоемкостью и, как следствие, значительной стоимостью очистки. Все вышеперечисленное требует создания и внедрения новых высокоэффективных технологий очистки сточных вод от фенольных соединений.

Применение современных каталитических систем позволяет достичь глубокой конверсии фенольных соединений вплоть до углекислого газа и воды [9-30]. Однако процесс окисления является крайне сложным и сопровождается образованием большого числа промежуточных соединений, некоторые из которых обладают высокой стабильностью [9-12]. В зависимости от условий проведения процесса возможна (i) полная минерализация фенольных соединений с образованием СО2 и Н2О, (ii) формирование полимеров, которые могут быть легко отделены от водной среды при помощи фильтрования, коагуляции или флотации и (iii) формирование легко биодеградируемых соединений, таких как карбоновые кислоты. Поэтому для селективного проведения процесса с целью получения целевого продукта важно учитывать закономерности и условия проведения процесса окисления. Основной проблемой создания каталитической технологии глубокого окисления фенольных соединений сточных вод является разработка новых высокоэффективных каталитических систем. Синтезированный катализатор должен обеспечивать высокую скорость окисления фенольных загрязнителей, эффективное окисление широкого спектра соединений с различными функциональными группами, иметь низкую стоимость и продолжительный срок службы без заметной потери каталитических свойств, а так же обладать высокой механической прочностью и быть невосприимчивым к каталитическим ядам.

Процесс глубокого каталитического окисления фенольных соединений кислородом воздуха представляет большой интерес для промышленного использования в связи с высокой производительностью, технологичностью, низкими капитальными затратами и возможностью проведения в полностью автоматическом режиме. За последние несколько лет по всему миру в эксплуатацию было введено более 200 реакторных систем глубокого окисления фенольных соединений сточных вод [12, 13], которые показали высокую эффективность своего применения. Однако процессы глубокого окисления являются экономически обоснованным только при достаточно высоких концентрациях органических загрязнителей в сточных водах, химический показатель кислорода которых не менее 10000 мг/л. Особый интерес представляет собой возможность создания мобильных комплексов для очистки сточных вод от фенольных соединений на основе каталитического жидкофазного окисления кислородом воздуха и их применение в случае загрязнения водных объектов различными высокотоксичными соединениями.

КАТАЛИТИЧЕСКОЕ ОКИСЛЕНИЕ

В последнее время большое внимание уделяется каталитическим методам глубокого жидкофазного окисления фенольных соединений [1, 2, 9-30] кислородом воздуха, которое обычно проводится при T=95-3500C, P=0,1-20 МПа, на металлических и металооксидных Pt, Ru, Rh, Pd, Fe, Ni, Cu, Cr, V, Co, Zn, Mn катализаторах с содержанием активного металла 0,01-40% [1, 2, 5-30] (табл. 1-3). Мы рассмотрим использование гетерогенных катализаторов, как наиболее широко применяемых в промышленности и научных исследованиях. В ходе процесса окисления фенольных соединений, как указано выше, образуется большое количество промежуточных соединений: о, р –бензохиноны, о, р-гидрохиноны, р-гидрокибензойная кислота, тетрогидро-р-бензохинон, малеиновая, малоновая, фумаровая, янтарная, уксусная, щавелевая, глиоксалевая, муравьиная кислоты и нерастворимые полимерные продукты и углекислый газ [12-25] (рис. 1.).

Рис. 1. Схема полного окисления фенола

Основными продуктами глубокого окисления фенольных соединений являются углекислый газ и вода [13], однако в большинстве случаев процесс сопровождается образованием высокоустойчивых карбоновых кислот, что приводит к смыву активного металла с поверхности катализатора и его преждевременной дезактивации. Кроме этого возможно формирование полифенольных полимеров и их сорбция на поверхности катализатора, что приводит к затруднению диффузии субстрата к активным центрам и ухудшению гидродинамической обстановки в реакторе. Большое влияние на состав конечных продуктов реакции оказывают структура и свойства используемой каталитической системы, а так же условия проведения процесса окисления [13, 17-26]. Кроме того, направление реакции окисления фенольных соединений также определяется типом реактора и его особенностями. Наибольшее распространение получили аппараты периодического и непрерывного действия снабженные мешалкой [19-24, 26, 27, 29, 30], однако колонные и трубчатые аппараты для проведения непрерывного окисления с закрепленным слоем катализатора являются более перспективными, что обусловлено простотой их конструкции, возможностью автоматизации и высокой эффективностью проведения процесса [12, 14-18] (табл. 1).

Таблица 1

Катализаторы и условия проведения жидкофазного окисления фенола в реакторе с неподвижным слоем катализатора

Катализатор

t,

0C

P,

МПа

Со,

г/л

Время, мин

Конверсия, %

Лит. источник

Al-Fe/ Глина

90-170

1,5-3,2

0,5-2

240

99-100

[14]

MnO2-CeO2

80-130

1,0

1

180

70-93

[15]

Fe/C

100-127

0,8

1

30

70-80

[16]

CuO-Cr2O3-C

140

1,6

1,2

320

99-100

[17, 18]

CuO/Al2O3

140

1,6

1,2

320

99-100

[17, 18]

Pt/Carbex-330

20-140

0,5-8,0

5

1-3

90-99

[12]

Ru/Carbex-330

20-140

0,5-8,0

5

1-3

90-99

[12]

КАТАЛИЗАТОРЫ НА ОСНОВЕ ПЕРЕХОДНЫХ МЕТАЛЛОВ

Катализаторы глубокого окисления фенольных соединений, синтезированные на основе переходных металлов и их оксидов, представляют особый интерес для промышленного использования, что связано с их достаточно высокой активностью и сравнительно низкой стоимостью.

Поэтому не удивительно, что большое количество работ, появившихся за последнее время, посвященных изучению процесса глубокого окисления фенольных соединений с использованием этих катализаторов [14-23] (табл. 1, 2).

В работе [14] было изучено глубокое окисление фенола на Al-Fe содержащей глине в трубчатом реакторе в широком интервале температур (110-2100С) и давлений (1,5-3,2 МПа).

Достигнута высокая конверсия фенола 99-100% и определены оптимальные условия проведения процесса: начальная концентрация фенола 1-2 г/л, высота слоя катализатора 0,6 м, t=1700C, P=3,2 МПа.

Установлено, что схема работы реактора глубокого окисления фенолов “снизу-вверх” является более эффективной при высоких давлениях кислорода, в то время как при низких давлениях организация потоков “сверху-вниз” показывает лучшие результаты.

Это связано с тем, что при низких давлениях основным лимитирующим фактором является массоперенос между газовой фазой и поверхностью катализатора, в то время как при высоких давлениях кислорода основным лимитирующим фактором становится массоперенос между поверхностью катализатора и жидкой фазой.

Таблица 2

Катализаторы на основе переходных металлов применяемые для окисления фенола

Катализатор

t,

0C

P,

МПа

Со,

г/л

Время, мин

Конверсия, %

Лит. источник

Fe2O3/Al2O3,

150

2,0-5,0

1,0

180

10-15

[22]

Fe2O3-CeO2-Al2O3

150

2,0-5,0

1,0

180

40-45

[22]

MnO2/Al2O3,

150

2,0-5,0

1,0

180

35-40

[22]

MnO2-CeO2-Al2O3

150

2,0-5,0

1,0

180

90-95

[22]

Engelhard Cu-0203T

140

1,6

1,2

40-320

99-100

[17, 18]

Engelhard Cu-1152T

140

1,6

1,2

320

90-95

[17]

Engelhard Cu-1230

140

1,6

1,2

320

95-100

[17]

Cu-Ni/Al2O3

140

1,6

1,2

320

99-100

[17]

CuO/Al2O3

140

0,7

5,0

240

95-99

[18, 22]

Cu/Al2O3

120-210

3,0

1,0

30

80-98

[20]

Cu-Ce/Al2O3

120-210

3,0

1,0

30

80-98

[20, 22]

Cu-Sn/ Al2O3

120-210

3,0

1,0

30

80-98

[20]

Sn/Al2O3

120-210

3,0

1,0

30

80-98

[20]

Ce/Al2O3

140-180

1,5

1,0

240

95-100

[21, 22, 23]

Ce/TiO2

140-180

1,5

1,0

240

20-30

[21]

Ce/SiO2

140-180

1,5

1,0

240

35-40

[21]

Ce/AlPO4

140-180

1,5

1,0

240

95-100

[21]

CoO/Al2O3,

150

2,0-5,0

1,0

180

10-15

[22]

CoO-CeO2-Al2O3

150

2,0-5,0

1,0

180

35-40

[22]

NiO/Al2O3,

150

2,0-5,0

1,0

180

10-15

[22]

NiO-CeO2-Al2O3

150

2,0-5,0

1,0

180

25-30

[22]

Авторы работы [15] провели комплексное исследование Mn-Ce оксидных каталитических систем глубокого окисления фенола. Было установлено влияние промоторов K, Cs на активность и селективность катализаторов. Причем добавление Cs привело к максимальному положительному эффекту. Однако синтезированные каталитические системы подвергались быстрой дезактивации за счет образования полимерной пленки на поверхности гранул. Для преодоления этого эффекта была разработана методика окислительной регенерации, позволяющая полностью восстановить эффективность катализатора после долговременного использования. Кроме того, установлено наличие самопроизвольного смыва металлов в реакционный раствор, причем концентрация Mn и Ce в растворе достигала 0,1 мг/л и 0,26 мг/л, соответственно, что является крайне нежелательным.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее