165314 (Полимеры)

2016-08-02СтудИзба

Описание файла

Документ из архива "Полимеры", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "химия" в общих файлах.

Онлайн просмотр документа "165314"

Текст из документа "165314"

«Полимеры»

Оглавление

Гиганты органического мира — полимеры 2

Что такое полимеризация и как она происходит 4

Полиэтилен и его семейство 5

Самый стойкий, самый прочный. Тефлон 8

Каучук, резина и другие 9

Что такое поликонденсация 12

«Волшебная резинка» 12

«Дурацкая замазка» 16

Фенолформальдегидные смолы 19

Может ли стекло быть органическим 20

Список литературы 233



Гиганты органического мира — полимеры

Среди изобилия самых разнообраз­ных по строению и свойствам орга­нических соединений есть особый класс — полимеры (от греч. «поли» — «много» и «мерос» — «часть»). Для этих веществ прежде всего характерна ог­ромная молекулярная масса — от де­сятков тысяч до миллионов атомных единиц массы, поэтому часто их ещё называют высокомолекулярными со­единениями (сокращённо ВМС).

К молекулярным гигантам относят­ся, например, важнейшие природные полимеры (белки, нуклеиновые кис­лоты, полисахариды), синтетические материалы (полиэтилен, поливинил-хлорид, каучук и т. д.). Поэтому ВМС играют важную роль и в биологиче­ских процессах, и в практической деятельности человека.

Органические полимеры постро­ены из элементарных звеньев — мно­гократно повторяющихся и связан­ных между собой остатков молекул низкомолекулярных веществ (моно-меров). Длину макромолекул выра­жают средним числом звеньев моно­мера, которое называют степенью полимеризации.

Полимеры могут иметь линейное, разветвлённое и сетчатое строение. Если каждое звено мономера условно обозначить буквой М, то макромоле­кула линейного строения будет вы­глядеть так:

... —М—М—М—М—М—М—...

В этом случае каждое из элементар­ных звеньев связано только с двумя

соседними и образует неразветвлён­ную цепь. Основная цепь макромо­лекулы может иметь короткие от­ветвления, и тогда построенные по такому типу полимеры будут раз­ветвлёнными: R



... —М—М—М—М—М—М—...


R

В сетчатых (сшитых) полимерах длинные линейные цепи связаны друг с другом в единую сетку более короткими поперечными цепями.

Если молекула мономера несим­метрична (СН2=СН—Х, где Х — за­меститель), могут образовываться н регулярные, и нерегулярные полиме­ры. В регулярном полимере происхо­дит присоединение либо «голова к хвосту»:

—СН2—СНХ—СН2—СНХ—,

либо «голова к голове»:

—СН2—СНХ—СНХ—СН2—.

Макромолекулы полимеров мо­гут быть построены из остатков раз­ных мономеров; ВМС такого типа на­зываются сополимерами. При этом в зависимости от способа чередования различных звеньев они также бывают регулярного и нерегулярного строения:

... —М—М—М—М—М—М—...

регулярный сополимер

... —ММ—М—М—М—М—...

нерегулярный сополимер

По своему происхождению все МС делятся на природные — биопо-полимеры (например, крахмал и целлюлоза) и синтетические (полиэтилен, полистирол и др.).

Природные полимеры синтезируются клетками растительных и животных организмов, а синтетические человек научился получать из про­ектов переработки природного газа, ^фти, каменного угля.

Полимеры могут быть кристаллическими или аморфными. Для кристаллизации высокомолекулярных веществ необходимо упорядоченное строение достаточно длинных участ­ков молекулярной цепи.

Высокомолекулярные соединения не имеют четкой температуры плавле­ния. При нагревании многие полиме­ры не плавятся, а лишь размягчаются, что позволяет формовать из них изде­лия методами пластической деформа­ции — прессованием, выдавливанием, литьём. Такие полимеры называют пластическими массами (пластмасса­ми, пластиками). У пластмасс низкая плотность, они легче самых лёгких ме­таллов (магния, алюминия) и потому считаются ценными конструкцион­ными материалами. По прочности некоторые пластики превосходят чу­гун и алюминий, а по химической стойкости — почти все металлы. Они могут быть устойчивы к действию во­ды и кислорода, кислот и щелочей.

Обычно пластмассы — диэлектрики (не проводят электрический ток), и от­дельные их сорта известны как лучшие изоляционные материалы из всех ис­пользуемых в современной технике.

Что такое полимеризация и как она происходит

Одним из важных химических свойств непредельных углеводородов — алкенов и диенов — является способ­ность их молекул соединяться друг с другом в длинные цепи. Этот про­цесс происходит за счёт раскрытия двойных связей и называется полиме­ризацией:

nR—СН=СН2 -> — (СНК—СН2)n.

Полимеризация непредельных со­единений в зависимости от меха­низма может быть радикальной или ионной. Радикальную полимериза­цию вызывают вещества (они называ­ются инициаторами), которые при нагревании распадаются на свобод­ные радикалы. Присоединяясь к мо­лекуле мономера, они порождают новый радикал — прообраз будущей макромолекулы полимера. Эта части­ца способна захватывать всё новые и новые молекулы, постепенно пре­вращаясь в гигантский радикал.

Радикальными инициаторами могут служить органические пероксиды R—О—О—R', азосоединения

R—N=N—R/, кислород. Радикальную полимеризацию вызывают ультрафио­летовое и y-излучение.

Обрыв быстро растущей цепи происходит при взаимодействии макрорадикала с молекулой, способ­ной превратиться в неактивный или малоактивный радикал. Это позволя­ет при проведении полимеризации использовать вещества, регулирую­щие рост цепи.

Ионная полимеризация начинает­ся с образования из молекул мономе­ра реакционноспособных ионов; со­ответственно такой процесс может быть катионным или анионным. Катионную полимеризацию проводят при очень низких температурах в присутствии неорганической кисло­ты, хлорида алюминия или бора. При этом промежуточной частицей будет макрокатион.

Если происходит захват растущим катионом аниона или образуется концевая двойная связь, то цепь об­рывается.

Катализаторы анионной полиме­ризации — щелочные металлы, их амиды, металлоорганические соеди­нения; они превращают мономеры в анионы, из которых получаются макромолекулы полимера.

Мономеры сильно отличаются по своей способности к полимериза­ции. Одни полимеризуются сами да­же при хранении на воздухе (напри­мер, стирол); для других требуются радикальные инициаторы, для треть­их — дорогие экзотические катализа­торы или очень жёсткие условия (вы­сокие температура и давление).

Полиэтилен и его семейство

Родоначальник ряда алкенов — эти­лен оказался для химиков «крепким орешком» — вплоть до 1933 г. учёным не удавалось его полимеризовать.

Первой была открыта радикальная полимеризация этилена и, как это часто бывает, обнаружили её случай­но. В 1933 г., проводя эксперименты по получению стирола из смеси бен­зола с этиленом при высоком давле­нии, исследователи выделили из про­дуктов реакции вязкую прозрачную массу — первый образец полиэтиле­на. Через четыре года, в 1937 г., анг­лийские химики разработали первый промышленный способ производст­ва полиэтилена, а в 1946 г. начался выпуск полиэтиленовых бутылок.

Для осуществления радикальной полимеризации этилена в качестве инициатора используется кислород. Смесь этилена с кислородом, в кото­рой содержание кислорода составля­ет 0,01 %, нагревают до 200 °С под давлением 1000 атм, при этом полу­чается полиэтилен высокого давления.

Макромолекулы такого полимера имеют много разветвлений в цепи, и потому материал характеризуется малой степенью кристалличности и невысокой прочностью.

В 1954 г. Карл Циглер и Джулио Натта открыли новый металлоорганический катализатор, благодаря че­му им удалось осуществить ионную полимеризацию полиэтилена при ат­мосферном давлении и температуре 60 °С (о катализаторе Циглера — Натты). Полимеризацию этилена при низ­ком давлении часто проводят в сме­си с высшими алкенами: бутеном-1; гексеном-1; 4-метилпентеном-1 и др. У полиэтилена этого вида в моле­кулах очень мало разветвлений, он регулярный, кристаллический и прочный.

Прослеживается любопытная зако­номерность: при высоком давлении образуется полиэтилен низкой плот­ности и прочности, а при низком — наоборот. Ещё одно отличие: у поли­этилена низкого давления большая степень полимеризации: она достига­ет 300 000; а у полиэтилена высоко­го давления — 50 000.

Полиэтилен — один из самых рас­пространённых синтетических по­лимеров. Это и всем известная поли­этиленовая плёнка — прекрасный упаковочный материал, и не подда­ющиеся коррозии полиэтиленовые трубы, и лёгкая, удобная в обращении посуда.

Ближайший гомолог этилена — пропилен. В 1955—1956 гг. Джулио Натте удалось получить полипропи­лен регулярного строения методом ионной полимеризации, используя комплексный катализатор на основе триэтилалюминия (С2Н5)3Аl и тетра-хлорида титана ТiCl4.

—СН2—СН—СН2—СН—СН2—СН—

СН3 СH3 СН3

Этот родственник полиэтилена обладает ценными свойствами: у не­го высокая температура размягче­ния (около 170°С), повышенные жёсткость и прочность по сравне­нию с полиэтиленом. Благодаря этим свойствам, а также доступности ис­ходного мономера, полипропилен применяют при изготовлении трубопроводов, химической аппаратуры и различных предметов домашнего обихода.

При замещении одного из атомов водорода в молекуле этилена на бензольное ядро образуется новая «заго­товка» для получения полимеров — винилбензол (стирол) СН2=СН—С6Н5.

Радикальная полимеризация сти­рола приводит к образованию нере­гулярного полистирола:

В таком полимере нерегулярные макромолекулы, содержащие объём­ные неполярные заместители, не мо­гут образовывать кристаллы. Поэтому полистирол легко плавится и раство­ряется во многих органических жид­костях, а при комнатной температуре находится в аморфном состоянии. При 100 °С полистирол размягчается, а при 185 °С — превращается в вязкую жидкость.

Полистирол получил широкое рас­пространение из-за своей дешевизны и лёгкости обработки. Однако есть у него один серьёзный недостаток — это очень непрочный и хрупкий материал, в чём может убедиться каж­дый, наступив на корпус шариковой ручки. Прозрачные корпуса автору­чек, коробки для кассет и лазерных дисков, детские игрушки, сувениры и другие предметы, для которых не требуется высокой прочности ма­териала, — все они изготовлены из полистирола.

При замене в этилене атома водо­рода на хлор образуется ещё один мономер — винилхлорид СН2=СН—С1. Впервые его полимеризацию осуще­ствил в 1872 г. немецкий химик Эйген Бауман (1846—1896). Заслугой этого исследователя стала разработка спо­соба радикальной полимеризации винилхлорида в присутствии органиче­ских пероксидов. к

При этом получается регулярный по­лимер, образованию которого спо­собствует высокая полярность моле­кулы винилхлорида — в процессе полимеризации ей выгодно подойти к растущему концу макромолекулы только одной стороной:

—СН—СН2—СН—СН2


Сl Сl

Активное практическое использо­вание поливинилхлорида (сокращён­но ПВХ) началось сравнительно не­давно — только с середины XX в. Проблема была в том, что чистый ПВХ обладает многими недостатками. При комнатной температуре он очень хру­пок и неэластичен. Кроме того, его трудно растворить или расплавить, а это сильно затрудняет переработку полимера. В 30-х гг. учёным удалось найти специальные вещества — стаби­лизаторы, увеличивающие стойкость ПВХ к действию тепла и света. Новый материал — пластифицированный поливинилхлорид получил широкое распространение. Сейчас из него дела­ют изоляцию для электрических про­водов — здесь он вытеснил более го­рючую и менее химически стойкую резину. Дождевые плащи, игрушки, паркетные плитки, один из видов искусственной кожи — вот далеко не полный список предметов повсе­дневного обихода, сделанных из «ста­рейшего» полимера — ПВХ.

Самый стойкий, самый прочный. Тефлон

Ближайшие родственники полиэтилена, сходные с ним по строению, под­час сильно отличаются от него по свойствам и приятно удивляют учёных новыми ценными качествами.

Если заменить все атомы водорода в молекуле этилена на атомы фто­ра, то этилен превратится в тетрафторэтилен, полимеризацией которо­го химики-технологи получили первую фторсодержашую пластмассу (фто­ропласт).

Политетрафторэтилен, названный впоследствии тефлоном, по многим механическим, физическим, химическим свойствам, как оказалось, пре­восходит не только полиэтилен, но и все остальные известные полимеры. Этот материал безразличен к действию любых растворителей и имеет необычно высокую температуру размягчения, равную 327 °С. А разложение тефлона начинается при рекордной для полимеров температуре — 425 °С!

Тефлон обладает непревзойдённой химической стойкостью: он совер­шенно не горит, на него не действуют концентрированные кислоты и щёлочи, даже таким химическим агрессорам, как галогены, царская водка и фтороводородная кислота, тефлон «не по зубам». Недаром его образ­но назвали «алмазным сердцем в шкуре носорога».

Этот замечательный материал незаменим при изготовлении химиче­ской аппаратуры для агрессивных сред, негорючей электроизоляции, а так­же подшипников и деталей, не требующих смазки. А ещё тефлоновой плён­кой покрывают металлическую посуду и гладящую поверхность утюгов. В сковороде с таким покрытием никогда не пригорит еда, а к утюгу ни­чего не прилипнет. Так что благородный и невозмутимый тефлон по пра­ву считается пластмассой будущего.

Каучук, резина и другие

Помимо высокомолекулярных ве­ществ семейства полиэтилена суще­ствует огромный класс полимеров, получаемых из сопряжённых дие­нов: бутадиена-1,3; 2-метилбутадиена-1,3 (изопрена) и их аналогов.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее