158306 (Естественно-научная картина мира), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Естественно-научная картина мира", который расположен в категории "". Всё это находится в предмете "философия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "философия" в общих файлах.

Онлайн просмотр документа "158306"

Текст 2 страницы из документа "158306"

1. Все состояния механического движения тел по отношению ко времени оказываются в принципе одинаковыми, поскольку время считается обратимым.

2. Все механические процессы подчиняются принципу строгого или жесткого детерминизма, суть которого состоит в признании возможности точного и однозначного определения состояния механической системы ее предыдущим состоянием.

Согласно этому принципу, случайность целиком исключается из природы. Все в мире строго детерминировано (или определено) предшествующими состояниями, событиями и явлениями. При распространении указанного принципа на действия и поведение людей неизбежно приходят к фатализму. Сам окружающий нас мир при механистической картине превращается в грандиозную машину, все последующие состояния которой точно и однозначно определяются ее предшествующими состояниями. Такую точку зрения на природу наиболее ясно и образно выразил выдающийся французский ученый XVTII в. Пьер Симон Лаплас (1749—2827):

Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, если бы вдобавок он оказался достаточно обширным, чтобы подчинить все данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями легчайших атомов; не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее предстало бы перед его взором.

3. Пространство и время никак не связаны с движениями тел, они имеют абсолютный характер.

В связи с этим Ньютон и вводит понятия абсолютного, или математического, пространства и времени. Такая картина напоминает представления о мире древних атомистов, которые считали, что атомы движутся в пустом пространстве. Подобно этому в ньютоновской механике пространство оказывается простым вместилищем движущихся в нем тел, которые не оказывают на него никакого влияния. Как мы покажем далее, такие представления были подвергнуты резкой критике в теории относительности.

4. Тенденция свести закономерности более высоких форм движения материи к законам простейшей его формы— механическому движению.

Такое стремление встретило критику со стороны биологов, медиков и некоторых химиков уже в XVIII в. Против него выступили также выдающиеся философы-материалисты Дени Дидро (1713—1784) и Поль Гольбах (1723—1789), не говоря уже о виталистах, которые приписывали живым организмам особую "жизненную силу", наличием которой они отличаются якобы от неживых тел. Из курса философии вы уже знаете, что механицизм, пытавшийся подходить ко всем без исключения процессам с точки зрения принципов и масштабов механики, явился одной из предпосылок возникновения метафизического метода мышления.

5. Связь механицизма с принципом дальнодействия, согласно которому действия и сигналы могут передаваться в пустом пространстве с какой угодно скоростью.

В частности, предполагалось, что гравитационные силы, или силы притяжения, действуют без какой-либо промежуточной среды, но сила их убывает с квадратом расстояния между телами. Сам Ньютон, как мы видели, вопрос о природе этих сил оставил решать будущим поколениям.

Все перечисленные и некоторые другие особенности предопределили ограниченность механистической картины мира, которые преодолевались в ходе последующего развития естествознания.

2. Электромагнитная картина мира

Уже в прошлом веке физики дополнили механистическую картину мира электромагнитной. Электрические и магнитные явления были известны им давно, но изучались обособленно друг от друга. Дальнейшее их исследование показало, что между ними существует глубокая взаимосвязь, что заставило ученых искать эту связь и создать единую электромагнитную теорию. Действительно, датский ученый Эрстед (1777—1851), поместив над проводником, по которому идет электрический ток, магнитную стрелку, обнаружил, что она отклоняется от первоначального положения. Это привело ученого к мысли, что электрический ток создает магнитное поле. Позднее английский физик Майкл Фарадей (1791— 1867), вращая замкнутый контур в магнитном поле, открыл, что в нем возникает электрический ток. На основе опытов Фарадея и других ученых английский физик Джеймс Клерк Максвелл (1831—1879) создал свою электромагнитную теорию. Таким путем было показано, что в мире существует не только вещество в виде тел, но и разнообразные физические поля. Одно из них было известно и во времена Ньютона и теперь называется гравитационным полем, а раньше рассматривалось просто как сила притяжения, возникающая между материальными телами. После того как объектом изучения физиков наряду с веществом стали разнообразные поля, картина мира приобрела более сложный характер. Тем не менее это была картина классической физики, которая изучала знакомый нам макромир. Положение коренным образом изменилось, когда ученые перешли к исследованию процессов в микромире. Здесь их ожидали новые необычайные открытия и явления.

3. Революция в естествознании и смена прежней картины мира

В конце прошлого и начале нынешнего века в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми частицами материи, своеобразными кирпичиками, из которых состоит природа, считались атомы, то в конце прошлого века были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишенных заряда частиц).

Согласно первой модели атома, построенной английским ученым Эрнестом Резерфордом (1871—1937), атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой:, вращающиеся электроны, теряя свою энергию, в конце концов должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована выдающимся датским физиком Нильсом Бором (1885—1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергию. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую.

Значительно изменились также взгляды на энергию. Если раньше предполагалось, что энергия излучается непрерывно, то тщательно поставленные эксперименты убедили физиков, что она может испускаться отдельными квантами: Об этом свидетельствует, например, явление фотоэффекта, когда кванты энергии видимого света вызывают электрический ток. Это явление, как известно, используется в фотоэкспонометрах, которыми пользуются в фотографии для определения выдержки при экспозиции.

В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что элементарные частицы вещества, например, электроны обладают не только корпускулярными, но и волновыми свойствами. Таким путем было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определенных условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля — свойства корпускул. Это явление получило название дуализма волны и частицы — представление, которое никак не укладывалось в рамки обычного здравого смысла. До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а энергия поля— волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов ученые вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.

В 1925-1927 г. для объяснения процессов, происходящих в мире мельчайших частиц материи — микромире, была создана новая волновая, или квантовая механика. Последнее название и утвердилось за новой наукой. Впоследствии возникли и разнообразные другие квантовые теории: квантовая электродинамика, теория элементарных частиц и другие, которые исследуют закономерности движения микромира.

Другая фундаментальная теория современной физики — теория относительности, в корне изменившая научные представления о пространстве и времени. В специальной теории относительности получил дальнейшее применение установленный еще Галилеем принцип относительности в механическом движении. Согласно этому принципу, во всех инерциальных системах, т.е. системах отсчета, движущихся друг относительно друга равномерно и прямолинейно, все механические процессы происходят одинаковым образом, и поэтому их законы имеют ту же самую математическую форму. Наблюдатели в таких системах не заметят никакой разницы в протекании механических явлений. В дальнейшем принцип относительности был использован и для описания электромагнитных процессов. Точнее говоря, сама специальная теория относительности появилась в связи с преодолением трудностей, возникших в этой теории.

Важный методологический урок, который был получен из специальной теории относительности, состоит в том, что она впервые ясно показала, что все движения, происходящие в природе, имеют относительный характер. Это означает, что в природе не существует никакой абсолютной системы отсчета и, следовательно, абсолютного движения, которые допускала ньютоновская механика.

Еще более радикальные изменения в учении о пространстве и времени произошли в связи с созданием общей теории относительности, которую нередко называют новой теорией тяготения, принципиально отличной от классической ньютоновской теории. Эта теория впервые ясно и четко установила связь между свойствами движущихся материальных тел и их пространственно-временной метрикой. Теоретические выводы из нее были экспериментально подтверждены во время наблюдения солнечного затмения. Согласно предсказаниям теории, луч света, идущий от далекой звезды и проходящий вблизи Солнца, должен отклониться от своего прямолинейного пути и искривиться, что и было подтверждено наблюдениями. Более подробно эти вопросы мы рассмотрим в следующей главе. Здесь же достаточно отметить, что общая теория относительности показала глубокую связь между движением материальных тел, а именно тяготеющих масс и структурой физического пространства — времени.

Научно-техническая революция, развернувшаяся в последние десятилетия, внесла много нового в наши представления о естественно-научной картине мира. Возникновение системного подхода позволило взглянуть на окружающий нас мир как единое, целостное образование, состоящее из огромного множества взаимодействующих друг с другом систем. С другой стороны, появление такого междисциплинарного направления исследований, как синергетика, или учение о самоорганизации, дало возможность, не только раскрыть внутренние механизмы всех эволюционных процессов, которые происходят в природе, но и представить весь мир как мир самоорганизующихся процессов. Заслуга синергетики состоит прежде всего в том, что она впервые показала, что процессы самоорганизации могут происходить в простейших системах неорганической природы, если для этого имеются определенные условия (открытость системы и ее неравновесность, достаточное удаление от точки равновесия и некоторые другие). Чем сложнее система, тем более высокий уровень имеют в них процессы самоорганизации. Так, уже на предбиологическом уровне возникают автопоэтические процессы, т.е. процессы самообновления, которые в живых системах выступают в виде взаимосвязанных процессов ассимиляции и диссимиляции. Главное достижение синергетики и возникшей на ее основе новой концепции самоорганизации состоит в том, что они помогают взглянуть на природу как на мир, находящийся в процессе непрестанной эволюции и развития.

В каком отношении синергетический подход находится к общесистемному?

Прежде всего подчеркнем, что два этих подхода не исключают, а наоборот, предполагают и дополняют друг друга. Действительно, когда рассматривают множество каких-либо объектов как систему, то обращают внимание на их взаимосвязь, взаимодействие и целостность.

Синергетический подход ориентируется на исследование процессов изменения и развития, систем. Он изучает процессы возникновения и формирования новых систем в процессе самоорганизации. Чем сложнее протекают эти процессы в различных системах, тем выше находятся такие системы на эволюционной лестнице. Таким образом, эволюция систем напрямую связана с механизмами самоорганизации. Исследование конкретных механизмов самоорганизации и основанной на ней эволюции составляет задачу конкретных наук. Синергетика же выявляет и формулирует общие принципы самоорганизации любых систем и в этом отношении она аналогична системному методу, который рассматривает общие принципы функционирования, развития и строения любых систем. В целом же системный подход имеет более общий и широкий характер, поскольку наряду с динамическими, развивающимися системами рассматривает также системы статические.

Эти новые мировоззренческие подходы к исследованию естественно-научной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы научных революций в естествознании. А ведь именно с революционными преобразованиями в естествознании связано изменение представлений о картине природы.

В наибольшей мере изменения в характере конкретного познания коснулись наук, изучающих живую природу. Переход от клеточного уровня исследования к молекулярному ознаменовался крупнейшими открытиями в биологии, связанными с расшифровкой генетического кода, пересмотром прежних взглядов на эволюцию живых организмов, уточнением старых и появлением новых гипотез происхождения жизни и многого другого. Такой переход стал возможен в результате взаимодействия различных естественных наук, широкого использования в биологии точных методов физики, химии, информатики и вычислительной техники.

В свою очередь живые системы послужили для химии той природной лабораторией, опыт которой ученые стремились воплотить в своих исследованиях по синтезу сложных соединений. По-видимому, в неменьшей степени учения и принципы биологии оказали свое воздействие на физику. Действительно, как мы покажем в последующих главах, представление о закрытых системах и их эволюции в сторону беспорядка и разрушения находилось в явном противоречии с эволюционной теорией Дарвина, которая доказывала, что в живой природе происходят возникновение новых видов растений и животных, их совершенствование и адаптация к окружающей среде. Это противоречие было разрешено благодаря возникновению неравновесной термодинамики, опирающейся на новые фундаментальные понятия открытых систем и принцип необратимости.

Выдвижение на передний край естествознания биологических проблем, а также особая специфика живых систем дали повод целому ряду ученых заявить о смене лидера современного естествознания. Если раньше таким бесспорным лидером считалась физика, то теперь в таком качестве все больше выступает биология. Основой устройства окружающего мира теперь признается не механизм и машина, а живой организм. Однако многочисленные противники такого взгляда не без основания заявляют, что поскольку живой организм состоит из тех же молекул, атомов, элементарных частиц и кварков, то по-прежнему лидером естествознания должна оставаться физика.

По-видимому, вопрос о лидерстве в естествознании зависит от множества разнообразных факторов, среди которых решающую роль играют значение лидирующей науки для общества, точность, разработанность и общность методов ее исследования, возможность их применения в других науках. Несомненно, однако, что самыми впечатляющими для современников являются наиболее крупные открытия, сделанные в лидирующей науке, и перспективы ее дальнейшего развития. С этой точки зрения биология второй половины XX столетия может рассматриваться как лидер современного естествознания, ибо именно в ее рамках были сделаны наиболее революционные открытия.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее