151095 (Фотоэлектронная эмиссия. Эффективные фотокатоды), страница 3

2016-08-01СтудИзба

Описание файла

Документ из архива "Фотоэлектронная эмиссия. Эффективные фотокатоды", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151095"

Текст 3 страницы из документа "151095"

В области вакуумного ультрафеолета квантовый выход значительно менее чувствителен к состоянию поверхности, чем в области, прилегающей к красной границе. Прогрев металлов обычно уменьшает Y лишь примерно в 10 раз. пленки, напыленные в измерительном приборе, в большинстве случаев характеризуются в 1, 52 раза более низкими значениями Y, чем пленки тех же металлов в атмосфере. Так же как и в длинноволновой области, имеется разброс (примерно в пределах одного порядка ) в значениях Y, измеренных разными авторами.

Целый ряд исследований посвящен выяснению влияния температуры катода на фототок. Первоначальные опыты с естественным светом давали неясные результаты и в общем устанавливали слабую зависимость iф от Т, если изменение температуры не вызвало изменения состояния поверхности, агрегатного состояния или фазовых превращений. Изучение фотоэффекта вызываемого монохроматическим светом, несомненно, установило температурный эффект. При этом фототок iф слабо меняется с Т для о и резко возрастает с повышением температуры при ~o(и в особенности для o). Примером могут служить данные для Рd, приведенные на рис.6

Рис 6.

Поведение тока было таково, как будто o уменьшалось с ростом температуры. Эффективная красная граница смещалась в область меньших с ростом Т, и вид спектральной характеристики в области o существенно менялся ; кривая iф в этой области спектра делалась положе и определение о становилась весьма не определенным.

Ценную информацию о механизме фотоэффекта могут дать результаты исследований по энергетическим распределениям фотоэлектронов. Эти исследования проводились либо методом отклонения в магнитном поле, либо методом задерживающего потенциала. Как показали еще одни из первых исследований в видимой и ближней ультрафиолетовой областях спектра, энергетический спектр фотоэлектронов эмитированных металлами непрерывен и занимает область от нуля до некоторого максимального значения Емах, определяемого соотношением Эйнштейна. Было показано, что при h, близких к ho, энергетический спектр фотоэлектронов слабо зависит от природы металла. Он изображается плавной кривой с максимумом рис.C ростом h постепенно увеличивается относительное число медленных электронов, но общий характер кривой сохраняется

(см. рис 7. Кривые 1, 2 и 3).

Рис7.

Начиная с некоторого значения h, характер кривых распределения усложняется, значительно возрастает относительная доля медленных электронов и существенно уменьшается количество фотоэлектронов с энергиями и близкими к ним. Для К, например, такое изменение энергетического спектра по наблюдается при h ~ - E1. Появление большого относительного количество медленных электронов в спектре фотоэлектронов при достаточно больших h объясняется обычно несколькими возможными причинами:

1) Большими потерями энергии, связанными с возбуждением фотоэлектронами при их движении к поверхности плазменных колебаний

2) Потерями энергии при взаимодействии с электронами проводимости, превращающими быстрые внутренние первичные фотоэлектроны в медленные; некоторые из возбужденных электронов проводимости также принимать участие в фотоэмиссии в качестве медленных фотоэлектронов; таким образом, при этом механизме один поглощенный фотон достаточной энергии может способствовать возникновению двух медленных фотоэлектронов;

3) Одновременном возбуждением при поглощении одного кванта излучения двух электронов; в этом случае, как и в предыдущем, некоторые из фотонов достаточной энергии могут создавать два фотоэлектрона. Энергетический спектр фотоэлектронов по данным подтвержденным в последние годы в работе, также существенно меняется при переходе к очень тонким металлическим пленкам. Так, согласно при h=3, 38 эв энергетический спектр электронов для пленки толщиной в 8 атомных слоев заметно отличается от такового для пленки толщиной 40 атомных слоев рис.8

Рис 8

Для тонких пленок количество медленных электронов уменьшается и возрастает число электронов с энергиями, близкими к максимальной, так как потери энергии, приводящие к превращению быстрых фотоэлектронов в медленные, на более коротком пути к поверхности в тонком фотокатоде уменьшаются.

Вопросы о виде спектральных характеристик фотокатодов, о распределении фотоэлектронов по энергиям и о температурной зависимости фототока лежат вне рамок первоначальной теории Эйнштейна. Рассмотрение их требует уточнения теории фотоэффекта. Решение задачи построения такой детальной теории принципиально должно было бы вестись по следующему плану : прежде всего следует выяснить при данной температуре Т распределение электронов в металле по различным состояниям; далее, выяснить вероятность поглощения электроном, находящимся в некотором состоянии, фотона частоты и определить состояние, в которое электрон при этом переходит. Затем требуется найти функцию распределения возбужденных электронов по состояниям. Далее следует определить для электронов, возбужденных в глубине металла, вероятности прохождения ими пути от места возбуждения до поверхности, а также потери энергии на этом пути. Затем надо найти выражение для потока электронов с данной энергией, падающих на потенциальный порог на границе металла, и определить вероятность прохождения ими через этот порог. Наконец, помножив число электронов с заданной энергией, падающих изнутри на 1см2 поверхности фотокатода за 1 сек, на вероятность выхода, можно найти для данной частоты фотоэлектронов с заданной энергией вне металла (кривую распределения фотоэлектронов по энергиям). В заключение, интегрируя по всем энергиям, можно найти полный фототок как функцию Т и (спектральные характеристики для различных Т).

________________________________________________________

Работа выхода

Понятие работы выхода как меры энергии связи электронов с твердым телом возникло уже на ранних стадия развития электронной теории металлов. Для объяснения существования электронного газа внутри металла необходимо было допустить наличие у границ металла некоего поля сил f(x), направленных внутрь металла и препятствующих вылету свободных электронов во внешнее пространство. При удаления электрона из металла совершается работа против этих сил работа выхода :

(1)

Таким образом, в классической теории металлов работа выхода равнялось скачку потенциальной энергии электрона на границе металла.

В зоммерфельдовской модели металла понятие работы выхода несколько усложнилось. Интеграл выражения (1) определял так называемую внешнюю работу выхода Wa, равную полной глубине потенциального ящика металла. Однако даже при температуре электронного газа Т=0, в отличие от классической теории, считалось что не все электроны обладали кинетической энергией, равной нулю, но распределялись по энергиям от нуля до некоторой максимальной Wi равной границе распределения Ферми. Поэтому наименьшая энергия, которую необходимо сообщить одному из электронов в проводимости при Т=0 для удаления его из металла, оказалось равной

=WaWi (2)

Если энергию покоящегося электронов вне металла положить равной нулю, то

поэтому (3)

т.е. работа выхода равна взятой с обратным знаком полной энергии верхнего электронного уровня E max в металле, занятого электроном при температуре электронного газа Т=0; в свою очередь уровень E max равен уровню электрохимического потенциала Eo электронного газа. Однако и это определение работы выхода не вполне удовлетворительно. Реальный металл не представляет собой потенциального ящика с гладким дном, т.е.Uconst= -Wa, но внутри металла потенциал поля, в котором находится каждый электрон, есть периодическая функция координат, определяемая структурой решетки, а также состоянием всех остальных электронов. Можно дать следующее определение энергии связи электрона в твердом теле, в частности, в металле, не зависящее от конкретной модели этого тела. Сам факт стационарного существования электронов внутри него свидетельствует, что система из N p ионов и N e=N p электронов внутри металла, находящихся в равновесии при температуре Т=0, обладает меньшей энергией, чем те же N p ионов с Ne= N e - n электронами при той же температуре также в состоянии равновесия. Обозначая энергию первой системы через E(Np, Ne), а второй - через E (Np, Ne), можно записать изменение энергии при удалении одного электрона, т.е. работу выхода при Т=0, в следующем виде :

. (4)

Это определение работы выхода аналогично определению работы ионизации нейтрального не возбужденного атома. При T>0 определение (4) делается неоднозначным.

Распределение электронов по энергиям в твердом

теле (металлы).

При построении электронной теории твердого тела требуется определить, какое число dN электронов в теле находится в квантовых состояниях, соответствующих некоторому интервалу энергий dE, иначе говоря, надо найти закон распределения электронов по энергиям. Функция f(e) характеризующая это распределение, определяется, во-первых, вероятностью (E) заполнения квантового состояния с энергией Е электроном:

f(E) (1)

Функция зависит от свойств частиц, образующих систему. системы тождественных частиц согласно квантовой механики подчиняются принципу неразличимости; для частиц со спином, равным (фермионы ), в частности для электронов, из этого принципа вытекает принцип Паули. При температуре Т=0 равновесным распределением любых частиц распределение, соответствующее минимуму полной энергии. Для фермионов это условие будет выполнено, если ими будут заняты квантовые состояния, соответствующие самым низким энергетическим уровням; число этих состояний Z, очевидно, равно N. При T >0 равновесное состояние соответствует минимуму свободной энергии. Для системы ферминов это условие удовлетворяется, если вероятность (E) равна

, (2)

где E0 так называемый электрохимический потенциал системы (часто его называют также уровнем электрохимического потенциала или уровнем Ферми). Величина E0 для системы электронов в некотором теле, взятая с обратном знаком, называется также работой выхода этого тела и обозначается через или e, т. е. E0==e. Формулу (2) принято называть формулу Ферми. Из (1), учитывая (2), получим

(3)

Распределение электронов по энергиям, даваемое формулой, называется распределением Ферми. Для того чтобы написать формулу этого распределения в явном виде, требуется знать электрохимический потенциал системы E0 и закон распределения плотности состояний электронов Электрохимического потенциала E0 вычисляется из условия нормировки:

где N полное число электронов системы.

__________________________________________________________

Селективный фотоэффект

Для большинства чистых металлических фотокатодов сила фототока почти не зависит от характера поляризации света; лишь распределения фотоэлектронов по направлениям вылета несколько отличны при фотоэффекте, вызываемом светом, поляризованным параллельно и перпендикулярно к плоскости падения. Спектральная характеристика в видимой и ближней ультрафиолетовой областях спектра плавно поднимается с ростом частоты падающего света. В 1894 Эльстер и Гейтель, исследуя фотоэффект с поверхности сплава калия и натрия, жидкого при комнатной температуре, обнаружили две новые особенности в этом явлении. Во-первых, спектральная характеристика после подъема с уменьшением длины световой волны достигла максимума и затем падала. Наличие наибольшей чувствительности фотокатода при некоторой длине волны получило название спектральной селективности. Во-вторых, фототок оказался существенно зависящим от поляризации падающего света. Введем следующие обозначения. Разложим электрический вектор световой волны, падающего на поверхность фотокатода под некоторым углом к ней, на две компоненты: во-первых, на электрический вектор, который колеблется в плоскости, перпендикулярной к плоскости падения; будем обозначать такой свет через ; во-вторых, на электрический вектор, который колеблется в плоскости падения и, следовательно, имеет составляющую, перпендикулярную к поверхности фотокатода; будем обозначать такой свет через .

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее