151075 (Физические процессы в магнитных материалах)

2016-08-01СтудИзба

Описание файла

Документ из архива "Физические процессы в магнитных материалах", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151075"

Текст из документа "151075"

ФИЗИЧЕСКИЕ ПРОЦЕССЫ В МАГНИТНЫХ МАТЕРИАЛАХ

1. Общие сведения о магнетизме

Любое вещество, помещенное в магнитное поле, приобретает некоторый магнитным момент М. Магнитный момент единицы объема вещества называют намагниченностью Jм.

Jм = dM/dV, A/м.

Намагниченность является векторной величиной, в изотропных телах она направлена либо параллельно, либо антипараллельно напряженности магнитного поля Н.

Намагниченность связана с напряженностью магнитного поля с соотношением

Jм = kмН,

где kм - магнитная восприимчивость - безразмерная величина, характеризующая способность вещества намагничиваться в магнитном поле.

Суммарная магнитная индукция в веществе определяется суммой индукции внешнего В0 и собственного Вi полей.

B = B0 + Bi = 0H + 0Jм = 0H(1 + kм) = 0 Н,

где 0 = 410-7 Гн/м - магнитная постоянная;

= 1 + kм - относительная магнитная проницаемость, показывающая во сколько раз магнитная индукция В поля в данной среде больше, чем магнитная индукция В0 в вакууме.

Проявление магнетизма в веществе обусловлено процессами движения электронов, которые образуют круговые токи, обладающие магнитными моментами. Магнитный момент электрона складывается из орбитального магнитного момента (вследствие движения электрона вокруг ядра) и спинового момента (вследствие вращения электрона вокруг собственной оси).

По поведения в магнитном поле все материалы делятся на диамагнетики и парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики.

Диамагнетики характеризуются очень малой отрицательной величиной магнитной восприимчивости (kм -10-5), которая в большинстве случаев не зависит от температуры и напряженности поля. Индуцированный магнитный момент направлен против направления поля и = 1 + kм 1. Диамагнетики выталкиваются из неоднородного магнитного поля. К диамагнетикам относятся инертные газы, водород, азот, многие жидкости (вода, нефть), ряд металлов (медь, серебро, золото, цинк, ртуть, галлий и др.), большинство полупроводников ( кремний, германий, арсенид гелия), органические соединения, неорганические стекла и др., а также все вещества в сверхпроводящем состоянии.

Парамагнетики характеризуются малой положительной величиной магнитной восприимчивости (kм 10-2 - 10-5), не зависящей от напряженности внешнего магнитного поля. В парамагнетиках атомы обладают собственным магнитным моментом даже в отсутствии внешнего магнитного поля, однако из-за теплового движения эти магнитные моменты распределены хаотично так, что намагниченность вещества в целом равна нулю. Внешнее магнитное поле вызывает преимущественную ориентацию магнитных моментов атомов в одном направлении. Тепловая энергия противодействует созданию магнитной упорядоченности. Поэтому магнитная восприимчивость сильно зависит от температуры и для большинства твердых парамагнетиков подчиняется закону Кюри - Вейса: kм = С/(Т - ), где С и - постоянные величины для данного вещества.

Парамагнетики втягиваются в неоднородное магнитное поле. К парамагнетикам относятся: кислород, окись азота, соли железа, никеля, кобальта, щелочные металлы, алюминий, платина.

Феррромагнетики обладают большими положительными значениями kм (до сотен тысяч и миллионов) и сложной нелинейной зависимостью kм от температуры и внешнего поля. Характерными особенностями ферромагнетиков являются способность сильно намагничиваться при обычных температурах в слабых полях и переход в парамагнитное состояние выше определенной температуры, так называемой точкой Кюри.

Антиферромагнетики характеризуются небольшой величиной магнитной восприимчивости (kм 10-3 - 10-5) и отличаются ее особой температурной зависимостью. По мере повышения температуры, начиная от ОK, kм растет, достигая максимума при температуре, называемой точкой Нееля, и далее начинает падать, подчиняясь закону Кюри - Вейса. В антиферромагнетиках атомы обладают одинаковыми магнитными моментами, которые направлены в противоположных направлениях и взаимно компенсируются. Антиферромагнетизм выражен у марганца, хрома.

Ферримагнетики характеризуются большой величиной магнитной восприимчивостью (kм 104 - 106), точкой Кюри Тк, меньшей, по сравнению с ферромагнетиками величиной намагниченности насыщения. В отсутствие внешнего магнитного поля ферримагнетики имеют антипараллельное расположение магнитных моментов соседних атомов или ионов, но при этом суммарный магнитный момент не равен нулю. Ферримагнетизм наблюдается у ферритов.

2. Природа ферромагнитного состояния вещества

У ферромагнетиков нарушен порядок заполнения электронных оболочек атомов. Атомы имеют внутренние незаполненные оболочки и поэтому обладают нескомпенсированным магнитным моментом. По мнению ученых основную роль в создании спонтанной намагниченности играет обменное взаимодействие недостроенных электронных оболочек, перекрывающихся при образовании твердого тела.

Для двух близкорасположенных атомов энергия обменного взаимодействия определяется выражением: ЭА = -А(s1 s2), где А - так называемый обменный интеграл, имеющий размерность энергии; s1 и s2 - единичные векторы, характеризующие направление спиновых моментов взаимодействующих электронов. Численное значение и знак обменного интеграла А зависит от расстояния между атомами a и диаметром оболочки d, содержащей нескомпенсированные спины.

Если a/d (3-4), то величина энергии взаимодействия ЭА незначительна и обменные силы не могут противодействовать тепловому движению и вызвать упорядоченное расположение спинов. Такие вещества проявляют свойства парамагнетиков.

При уменьшении расстояния между атомами обменный интеграл возрастает, т.е. обменное взаимодействие усиливается и становится возможной параллельная ориентация спинов, когда s1 s2 =1, характерная для ферромагнетиков.

При дальнейшем сближении атомов (a/d 1.3) обменный интеграл А становится отрицательным. В таком случае энергетически выгодно антипараллельное расположение спинов (s1 s2 = 1), т.е. такие вещества должны быть антиферромагнетиками.

При наличии спонтанной намагниченности, результирующий магнитный момент предварительно ненамагниченного ферромагнетика равен нулю. Это объясняется тем, что весь объем ферромагнетиков самопроизвольно разбивается на локальные области - домены. В пределах домена спины ориентированы параллельно друг другу. Домен находится в состоянии магнитного насыщения. Направление магнитных доменов внутри образца равновероятно. Характер разбиения образца на домены определяется из условия минимума свободной энергии системы. Внутри образца образуются замкнутые магнитные цепочки и его результирующий магнитный момент будет равен нулю. Линейные размеры домена 10-2 - 10-3мм. Переходной слой, разделяющий два домена называют "стенкой Блоха". В пределах такого слоя происходит постепенное изменение ориентации спинов. Толщина "стенок Блоха" может достигать несколько сот межатомных расстояний(например, в железе около 100 нм).

В зависимости от размеров образца, его физических свойств и ряда других причин существуют разные структуры: однодоменные, полосовые, лабиринтные, цилиндрические и др.

3. Процессы при намагничивании ферромагнетиков

В монокристаллах ферромагнитных веществ существуют направления легкого и трудного намагничивания. В отсутствии внешнего поля магнитные моменты доменов самопроизвольно ориентируются вдоль одной из осей легкого намагничивания. Энергия, которую необходимо затратить для намагничивания монокристаллического образца до насыщения вдоль одной из осей легкого намагничивания, значительно меньше, чем вдоль оси трудного намагничивания. При наличии внешнего поля самым энергетически выгодным направлением является ось легкого намагничивания, составляющая наименьший угол с направлением внешнего поля.

Зависимость магнитной индукции макрообъема ферромагнетика от напряженности внешнего магнитного поля называют кривой намагничивания.

Возрастание индукции под действием внешнего поля обусловлена смещением доменных границ и поворотом магнитных моментов доменов.

В полях относительно малой напряженности (область I) намагничивание происходит в основном за счет роста доменов, имеющих векторы намагниченности близкие к направлению внешнего поля и, соответственно, уменьшения доменов, обладающих наибольшим углом направления магнитного момента по отношению к внешнему полю. Начальному участку кривой соответствует обратимое (упругое) смещение доменных границ. После снятия поля доменные границы возвращаются в прежнее положение.

В области II смещение доменных границ носит необратимый, скачкообразный характер. В этом процессе участвует значительно большее число доменов, чем на начальном участке, процесс намагничивания идет более интенсивно и кривая намагничивания становится круче.

При дальнейшем усилении поля (область III) возрастает роль механизма поворота магнитных моментов доменов из направления легкого намагничивания в направлении поля, т.е. в направление более трудного намагничивания.

После окончания процесса поворота наступает техническое насыщение намагниченности (область IV). Величина индукции достигает значения насыщения Bs. Незначительное возрастание индукции обусловлено слагаемым 0Н и увеличением намагниченности самого домена.

При уменьшении напряженности магнитного поля вектор намагниченности будет поворачиваться в направлении оси легкого намагничивания.

Когда поле станет равным нулю индукция будет иметь некоторое значение Br, называемое остаточной индукцией. При приложении поля противоположного знака возникают домены, у которых направление векторов намагниченности близко к направлению поля. Эти домены растут и при некотором значении поля индукция обращается в нуль.

Напряженность размагничивающего поля - Нс, при которой индукция в ферромагнетике, предварительно намагниченного до насыщения, обращается в нуль, называют коэрцитивной силой.

Увеличение напряженности поля до значений, больших -Нс, вызывает перемагничивание ферромагнетика вплоть до насыщения (-Bs). Изменение магнитного состояния ферромагнетиков при его циклическом перемагничивании характеризуется явлением гистерезиса. Петлю гистерезиса, полученную при индукции насыщения, называют предельной. Величины Br и Hc являются параметрами предельной петли гистерезиса. Совокупность вершин петель гистерезиса образуют основную кривую намагничивания ферромагнетиков.

Крутизна кривой намагниченности (т.е. легкость, с которой намагничивается материал) характеризуется магнитной проницаемостью.

Статическая магнитная проницаемость определяется по формуле

ст = B/(0H).

Начальная магнитная проницаемость н определяется в слабых магнитных полях (Н 0.1 А/м) при Н 0.

н = 1/0 lim B/H.

Н0

Крутизну отдельных участков кривой намагничивания характеризуют дифференциальной магнитной проницаемостью

диф = 1/0 dB/dH.

Для одного и того же образца диф макс ст макс.

При одновременном воздействии сильного постоянного и слабого переменного магнитных полей образуется небольшая частная петля гистерезиса. Ферромагнетик в этом случае характеризуется реверсивной (обратимой) магнитной проницаемостью

.

Для ферромагнетиков характерно явление магнитострикции - изменение линейных размеров при намагничивании. Магнитострикция оценивается величиной относительной деформации в направлении магнитного поля: ll. Величина и знак коэффициента магнитострикции зависит от типа структуры, кристаллографического направления, напряженности магнитного поля и температуры. Магнитострикция сопровождается появлением внутренних напряжений, деформацией кристаллической решетки, что препятствует смещению доменных границ и затрудняет процесс намагничивания ферромагнетиков в слабых полях. Поэтому высокой магнитной проницаемостью обладают магнитные материалы с малыми коэффициентами анизотропии и магнитострикции.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее