150620 (Проблемы современной физики)

2016-08-01СтудИзба

Описание файла

Документ из архива "Проблемы современной физики", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "150620"

Текст из документа "150620"

Реферат

по физике

на тему:

«Проблемы современной физики»

Начнем с проблемы, которая привлекает сейчас наибольшее внимание физиков, над которой, пожалуй, работает наибольшее количество исследователей и исследовательских лабораторий во всем мире, – это проблема атомного ядра и, в частности, как наиболее актуальная и важная ее часть – так называемая проблема урана.

Удалось установить, что атомы тол состоят 113 сравнительно тяжелого положительно заряженного ядра, окруженного некоторым числом электронов. Положительный заряд ядра и отрицательные заряды окружающих его электронов компенсируют друг друга. В целом атом кажется нейтральным.

С 1913 почти до 1930 г. физики изучали самым тщательным образом свойства и внешние проявления той атмосферы электронов, которые окружают атомное ядро. Эти исследования привели к единой цельной теории, обнаружившей новые законы движения электронов в атоме, ранее нам неизвестные. Эта теория получила название квантовой, или волновой, теории материи. К ней мы еще вернемся.

Примерно с 1930 г. основное внимание было направлено на атомное ядро. Ядро нас особенно интересует, потому что в нем сосредоточена почти вся масса атома. А масса есть мера того запаса энергии, которой обладает данная система.

Каждый грамм любого вещества заключает в себе точно известную энергию и притом весьма значительную. Так, например, в стакане чаю, который весит примерно 200 г., заключено количество энергии, для получения которой нужно было бы сжечь около миллиона тонн угля.

Эта энергия находится именно в атомном ядре, потому что 0.999 всей энергии, всей массы тела заключает в себе ядра и только меньше 0.001 всей массы может быть отнесено к энергии электронов. Колоссальные запасы энергии, находящиеся в ядрах, несравнимы ни с какой формой энергии, какую мы знали до сих пор.

Естественно, заманчива надежда обладать этой энергией. Но для этого сначала нужно изучить ее, а затем найти пути для ее использования.

Но, кроме того, ядро интересует нас и по другим причинам. Ядро атома целиком определяет всю природу его, определяет его химические свойства и его индивидуальность.

Если железо отличается от меди, от углерода, от свинца, то различие это лежит именно в атомных ядрах, а не в электронах. Электроны у всех тел одни и те же, и любой атом может потерять часть своих электронов вплоть до того, что могут быть сорваны все электроны с атома. Пока цело и неизменно атомное ядро со своим положительным зарядом, оно всегда притянет к себе столько электронов, сколько необходимо для компенсации его заряда. Если в ядре серебра 47 зарядов, то оно всегда присоединит к себе 47 электронов. Поэтому, пока целю ядро, мы имеем дело с тем же самым элементом, с тем же самым веществом. Стоит изменить ядро, как из одного химического элемента получается другой. Только тогда осуществилась бы давняя и давно уже за безнадежностью оставленная мечта алхимии – превращения одних элементов в другие. На современном этапе истории эта мечта осуществилась, не совсем в тех формах и не теми результатами, которые ожидались алхимиками.

Что мы знаем об атомном ядре? Ядро в свою очередь состоит из еще более мелких составных частей. Эти составные части представляют собой простейшие известные нам в природе ядра.

Самое легкое и потому самое простое ядро – это ядро атома водорода. Водород – первый элемент периодической системы с атомным весом около 1. Ядро водорода входит в состав всех других ядер. Но, с другой стороны, легко видеть, что все ядра не могут состоять только из водородных ядер, как давно, уже более 100 лет назад, предполагал Проут.

Ядра атомов обладают определенной массой, которая дается атомным весом, и определенным зарядом. Заряд ядра задает тот номер, который данный элемент занимает в периодической системе Менделеева.

Водород в этой системе – первый элемент: у пего один положительный заряд и один электрон. Второй по порядку элемент имеет ядро с двойным зарядом, третий – с тройным и т.д. вплоть до самого последнего и самого тяжелого из всех элементов – урана, ядро которого имеет 92 положительных заряда.

Менделеев, систематизируя громадный опытный материал в области химии, создал периодическую систему. Он, конечно, не подозревал в то время о существовании ядер, но не думал, что порядок элементов в созданной им системе определяется просто зарядом ядра и ничем больше. Оказывается, что эти две характеристики атомных ядер – атомный вес и заряд – не соответствуют тому, что мы могли бы ожидать, исходя из гипотезы Проута.

Так, второй элемент – гелий имеет атомный вес 4. Если он состоит из 4 ядер водорода, то и заряд его должен был бы быть 4, а между тем заряд его 2, потому что это второй элемент. Таким образом, нужно думать, что в гелии всего 2 ядра водорода. Ядра водорода мы называем протонами. Ноу кроме того, в ядре гелия есть еще 2 единицы массы, которые заряда не имеют. Вторую составную часть ядра приходится считать незаряженным ядром водорода. Приходится различать ядра водорода, обладающие зарядом, или протоны, и ядра, не обладающие совсем электрическим зарядом, нейтральные, их мы называем нейтронами.

Все ядра состоят из протонов и нейтронов. В гелии 2 протона и 2 нейтрона. В азоте 7 протонов и 7 нейтронов. В кислороде 8 протонов и 8 нейтронов, в углероде С протонов и 6 нейтронов.

Но дальше эта простота несколько нарушается, число нейтронов становится все больше и больше но сравнению с числом протонов, и в самом последнем элементе – уране имеется 92 заряда, 92 протона, а атомный вес его 238. Следовательно, к 92 протонам прибавлено еще 146 нейтронов.

Конечно, нельзя думать, что то, что мы знаем в 1940 г., есть уже исчерпывающее отображение реального мира и многообразие заканчивается на этих частицах, которые являются элементарными в буквальном смысле слова. Понятие элементарности означает только определенный этап в нашем проникновении в глубь природы. На данном этапе мы знаем, однако, состав атома лишь вплоть до этих элементов.

Эта простая картина па самом деле была выяснена не так легко. Пришлось преодолеть целый ряд затруднений, целый ряд противоречий, которые и момент своего выявления казались безвыходными, но которые, как всегда в истории науки, оказались только различными сторонами более общей картины, представлявшей собою синтез того, что казалось противоречием, и мы переходили к следующему, более глубокому пониманию проблемы.

Важнейшим из этих затруднений оказалось следующее: в самом начале нашего столетия было уже известно, что из недр радиоактивных атомов (о ядре тогда еще не подозревали) вылетают б-частицы (они оказались ядрами гелия) и в-частицы (электроны). Казалось, то, что вылетает из атома, это и есть то, из чего он состоит. Следовательно, казалось, ядра атомов состоят из ядер гелия и электронов.

Ошибочность первой части этого утверждения ясна: очевидно, что невозможно составить ядро водорода из вчетверо более тяжелых ядер гелия: часть не может быть больше целого.

Оказалась неверной и вторая часть этого утверждения. Электроны действительно вылетают при ядерных процессах, и тем не менее электронов в ядрах нет. Казалось бы, здесь – логическое противоречие. Так ли это?

Мы знаем, что атомы испускают свет, световые кванты (фотоны).

Что же эти фотоны запасены в атоме в виде света и ждут момента для вылета? Очевидно, нет. Мы понимаем испускание света таким образом, что электрические заряды в атоме, переходя из одного состояния в другое, освобождают некоторое количество энергии, которая переходит в форму лучистой энергии, распространяющейся в пространстве.

Аналогичные соображения можно высказать и относительно электрона. Электрон по целому ряду соображений не может находиться в атомном ядре. Но он не может и создаваться в ядре, как фотон, потому что обладает отрицательным электрическим зарядом. Твердо установлено, что электрический заряд так же, как и энергия и материя в целом, остается неизменным; общее количество электричества нигде не создается и нигде не исчезает. Следовательно, если уносится отрицательный заряд, то ядро получает равный ему положительный заряд. Процесс испускания электронов сопровождается изменением заряда ядра. Но ядро состоит из протопоп и нейтронов, значит, один из незаряженные нейтронов превратился в положительно заряженный протон.

Отдельный отрицательный электрон не может ни возникнуть, ни исчезнуть. Но два противоположных заряда могут при достаточном сближении взаимно скомпенсировать друг друга или даже совсем исчезнуть, выделив свой запас энергии в виде лучистой энергии (фотонов).

Какие же это положительные заряды? Удалось установить, что, кроме отрицательных электронов, в природе наблюдаются и могут быть созданы средствами лабораторий и техники положительные заряды, которые по всем своим свойствам: по массе, по величине заряда вполне соответствуют электронам, но только имеют положительный заряд. Такой заряд мы называем позитроном.

Таким образом, мы различаем электроны (отрицательные) и позитроны (положительные), отличающиеся только противоположным знаком заряда. Вблизи ядер могут происходить как процессы соединения позитронов с электронами, так и расщепления на электрон и позитрон, причем электрон уходит из атома, а позитрон входит в ядро, превращая нейтрон в протон. Одновременно с электроном уходит и незаряженная частица – нейтрино.

Наблюдаются и такие процессы в ядре, при которых электрон передает свой заряд ядру, превращая протон в нейтрон, а позитрон вылетает из атома. Когда из атома вылетает электрон, заряд ядра увеличивается на единицу; когда вылетает позитрон или протон, заряд и номер в периодической системе уменьшается на одну единицу.

Все ядра построены из заряженных протонов и незаряженных нейтронов. Спрашивается, какими силами они сдерживаются в атомном ядре, что их связывает между собой, что определяет построение различных атомных ядер из этих элементов?

Аналогичный вопрос о связи ядра с электронами в атоме получил простой ответ. Положительный заряд ядра притягивает к себе отрицательные электроны по основным законам электричества так же, как Солнце силами тяготения притягивает к себе Землю и другие планеты. Но в атомном ядре ведь одна из составных частей нейтральна. Чем же она связывается с положительно заряженным протоном и другими нейтронами? Опыты показали, что силы, связывающие между собой два нейтрона, примерно такие же по величине, как и силы, связывающие между собой нейтрон с протоном и даже 2 протона между собой. Это не силы тяготения, не электрические или магнитные взаимодействия, а силы особого характера, которые вытекают из квантовой, или волновой, механики.

Один из советских ученых, И.Е. 'Гамм высказал гипотезу, что связь между нейтроном и протоном обеспечивается электрическими зарядами – электронами и позитронами. Испускание и поглощение их действительно должно дать некоторые силы связи между протоном и нейтроном. Но, как показали вычислении, эти силы во много раз слабее, чем те, которые па самом деле существуют в ядре и обеспечивают его прочность.

Тогда японский физик Юкава попробовал поставить задачу таким образом: раз взаимодействие при посредстве электронов и позитронов недостаточно, чтобы объяснить ядерные силы, то каковы же частицы, которые обеспечили бы достаточные силы? И он вычислил, что если бы в ядре встречались отрицательные и положительные частицы с массой в 200 раз большей, чем позитрон р электрон, то эти частицы обеспечили бы правильную ре-личину сил взаимодействия.

Спустя немного времени эти частицы были обнаружены в космических лучах, которые, приходя из мировою пространства, пронизывают атмосферу и наблюдаются и на земной поверхности, и па высотах Эльбруса, и даже под землей на достаточно большой глубине. Оказывается, что космические лучи, входя в атмосферу, создают заряженные отрицательно и положительно частицы, с массой примерно в 200 раз большей, чем масса электрона. Эти частицы в то же время в 10 раз легче, чем протон и нейтрон (которые примерно в 2000 раз тяжелее, чем электрон). Таким образом, это – какие-то частицы «среднего» веса. Они поэтому были названы мезотронами, или, для краткости, мезонами. Их существование в составе космических лучей в земной атмосфере сейчас не вызывает сомнения.

Тот же И.Е. Тамм в последнее время изучал законы движения мезонов. Оказывается, они обладают своеобразными свойствами, во многих отношениях не похожими на свойства электронов и позитронов. На основании теории мезонов он вместе с Л.Д. Ландау создал чрезвычайно интересную теорию образования нейтронов и протонов.

Тамм и Ландау представляют себе, что нейтрон есть протон, соединенный с отрицательным мезоном. Положительно заряженный протон с отрицательным электроном образуют атом водорода, хорошо нам известный. Но если вместо отрицательного электрона имеется отрицательный мезон, частица в 200 раз более тяжелая, с особыми свойствами, то такая комбинация занимает гораздо меньше места и по всем своим свойствам близко совпадает с тем, что мы знаем о нейтроне.

Согласно этой гипотезе, считается, что нейтрон – это протон, соединенный с отрицательным мезоном, и, наоборот, протон – это нейтрон, соединенный с положительным мезоном.

Таким образом, «элементарные» частицы – протоны и нейтроны – на наших глазах начинают снова расслаиваться и обнаруживать свою сложную структуру.

Но, пожалуй, еще более интересно, что такая теория вновь возвращает нас к электрической теории материн, нарушенной появлением нейтронов. Теперь снова можно утверждать, что все элементы атома и его ядра, которые нам до сих пор известны, имеют, в сущности, электрическое происхождение.

Однако не надо думать, что в ядре мы имеем дело просто с повторением свойств того же атома.

Переходя от опыта, накопленного в астрономии и механике, к масштабам атома, к 100-миллионным долям сантиметра, мы попадаем в новый мир, где проявляются неизвестные ранее новые физические свойства атомной физики. Эти свойства объясняются квантовой механикой.

Совершенно естественно ожидать, и, по-видимому, опыт уже нам это показывает, что когда мы переходим к следующему этапу, к атомному ядру, а атомное ядро еще в 100 тысяч раз меньше, чем атом, то здесь мы обнаруживаем еще новые, специфические законы ядерных процессов, не проявляющиеся заметным образом ни в атоме, ни в больших телах.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее