150479 (Магнитные наносистемы), страница 3

2016-08-01СтудИзба

Описание файла

Документ из архива "Магнитные наносистемы", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "150479"

Текст 3 страницы из документа "150479"

При зарождении кластер не контактирует с другими кластерами. Запишем выражения для площади поверхности и объема изолированного кластера и , тогда уравнение (1) с учетом (2) можно представить следующим образом:

(3)

Функция имеет максимум в точке ( - критический радиус зародышей при нуклеации), и минимум в точке .

Выражение (3) характеризует зарождение и рост кластера в системе неконтактирующих наночастиц.

Дальнейший рост кластеров приводит к образованию контактов и спеканию системы. Если на этой стадии расстояние между центрами кластеров равно, то выражения для площади поверхности и объема кластера в контакте можно записать так:

где к – число контактирующих с кластером соседей.

Изменение свободной энергии Гиббса на стадии спекания составляет:

(4)

Для примера на рис.1 представлена зависимость для . Первый минимум в точке соответствует исходному состоянию маточной среды. Второй минимум в точке отвечает первому устойчивому состоянию – равновесному состоянию образовавшихся, но не контактирующих кластеров. Третий минимум соответствует системе кластеров имеющих к контактирующих соседних частиц, подвергаемых спеканию при условии . Соответственно первый максимум при представляет

собой потенциальный барьер нуклеации, второй - потенциальный барьер стадии спекания.

Рис.(2) демонстрирует вид потенциального барьера процесса спекания для к =6 и различных значений . В плотно заселенной кластерами системе, при , спекание

происходит без барьера. В менее плотно заселенной системе, при , процесс перехода к спеканию осуществляется через потенциальный барьер, а в еще менее плотно заселенной системе, при , спекание вообще не происходит.

На кривых дифференциального термического анализа и дифференциальной термической гравиметрии для процесса термического разложения оксалата железа на воздухе обнаруживаются два минимума: при и при . При выделяются , , и начинает формироваться подвижная среда, в которой зарождаются и растут кластеры оксида железа. Второй минимум при , по-видимому связан с дальнейшим удалением из оксалата и , и началом спекания кластеров оксида железа.

Размер кластеров увеличивается с повышением от до . Его оценивали по величине удельной поверхности (по методу БЭТ), а также из данных рентгеноструктурного анализа атомно-силовой микроскопии и мессбауэровской спектроскопии.

Согласно зависимости на рис. (1), докритическая область размеров соответствует стадии флуктуационного зарождения кластеров. В области укрупнение кластеров сопровождается уменьшением свободной энергии, процесс протекает спонтанно и заканчивается образованием устойчивых кластеров размером , объединенных в систему слабовзаимодействующих неконтактирующих кластеров (система 1).

При дальнейшем повышении температуры создаются условия для массового образования контактов между кластерами ( ) и начала спекания, в результате которого образуется система сильно взаимодействующих (спекшихся) кластеров размером (система 2). Значения и определяются условиями синтеза. Поэтому результат твердотельной топохимической реакции зависит от рабочей температуры продолжительности спекания и предыстории образца.

4.2 Магнитные свойства наносистемы оксидов железа

Изменение межкластерного взаимодействия от "слабого" к "сильному" приводит к изменению магнитных свойств наносистемы. Эти изменения исследовались методом мессбауэровской спектроскопии. Для системы 1 (изолированные кластеры) характерно явление суперпарамагнетизма, проявляющегося в виде тепловых флуктуаций магнитного момента кластера как целого, что приводит к размыванию магнитной сверхтонкой структуры спектра (рис. 3а,б). С момента образования системы 2 (взаимодействующие кластеры) появляется достаточно четко выраженная магнитная сверхтонкая структура с узким центральным парамагнитным дублетом (рис. 3в, г). Такой же эффект наблюдался ранее для нанокластеров ферригидрита, изолированных в порах полисорба, а также в кластерах и и в ядре железосодержащих белков ферритина и гемосидерина. Наблюдавшийся спектр мы объясняем как результат наличия в системе нанокластеров магнитного фазового перехода первого рода, при котором намагниченность или магнитный порядок изменяются скачком. Скачкообразный переход может наблюдаться при изменении температуры в некоторой критической точке , а также при изменении размера кластера, когда осуществляется переход через критическое значение радиуса . Скачкообразные переходы в наносистеме, обусловленные сильным межкластерным взаимодействием, давлением и деформацией, наиболее полно наблюдаются для системы 2, состоящей из крупных, спекшихся кластеров (20-50 нм) и . Отметим, что по данным рентгеноструктурного анализа обладает ромбоэдрической структурой, характерной для корунда, а - кубической структурой шпинели.

Мессбауэровские спектры наносистемы и (рис. 4) свидетельствуют о наличии в ней скачкообразных магнитных переходов между магнитоупорядоченным состоянием с характерной сверхтонкой структурой и парамагнитным состоянием, к которому отнесен центральный дублет.

Эти магнитные переходы происходят при температурах , которые ниже критических температур , характерных для массивных образцов и (856 и 965 К соответственно). Понижение критической температуры (по сравнению с ) не может быть следствием суперпарамагнетизма из-за больших размеров кластеров, составляющих систему. Расчет времени релаксации по формуле, используемой для описания релаксации в суперпарамагнитных системах

где ; К - константа магнитной анизотропии кластера; V – объем кластера, дает значения на несколько порядков большие времени измерения, равному . В результате магнитная индукция исчезает скачкообразно, что обусловлено трансформацией магнитной сверхтонкой структуры в парамагнитный дублет (рис. 5а).

Наличие в наносистеме и фазового перехода первого рода связано с "сильным" межкластерным взаимодействием. При спекании кластеров кардинально меняется кривизна их поверхности, которая, как показали оценки, определяет возможность существования скачкообразного магнитного перехода [2].

Кроме магнитного фазового перехода первого рода в этой системе наблюдаются еще два фазовых перехода: слабый ферромагнетик – антиферромагнетик и коллективный магнитный фазовый переход с образованием двойниковых наноструктур. Слабый ферромагнетизм (неколлинеарный антиферромагнетизм) возникает при повышении температуры, как следствие нестабильности скомпенсированного антиферромагнетизма. Для массивного образца существует магнитный фазовый переход при , известный как переход Морина, когда в структуре скачком изменяется тип магнитного упорядочения. При имеет место коллинеарный антиферромагнетизм, а при - неколлинеарный антиферромагнетизм (слабый ферромагнетизм). Этот переход сопровождается поворотом спинов на .

В мессбауэровских спектрах фазовый переход "коллинеарность – неколлинеарность магнитных моментов" с поворотом направления спинов относительно направления градиента кристаллического поля определяется по изменению знака и величины квадрупольного расщепления спектра , обладающего магнитной сверхтонкой структурой. Так, для массивного образца высокотемпературной фазе соответствует мм/с, а низкотемпературной мм/с. Особенности этого фазового перехода в наносистеме и прослеживаются из рис. 5б. Низкотемпературная фаза ( мм/с), обладающая при коллинеарным антиферромагнетизмом, при переходит в состояние неколлинеарного антиферромагнетизма с мм/с (высокотемпературная фаза). Таким образом температура перехода Морина наносистемы по сравнению с поведением массивного материала понижается до 120 К , причем высокотемпературная фаза имеет меньшее значение , чем характерное для массивного материала. С уменьшением размера кластера обменная энергия уменьшается (понижается ) и вероятность существования неколлинеарного антиферромагнетизма возрастает.

Отметим еще одно важное обстоятельство. Несмотря на широкое распределение нанокластеров по размерам, фазовый переход в них происходит при фиксированной температуре . Это свидетельствует о коллективном превращении всей системы, когда фазовый переход в одном кластере индуцирует фазовый переход во всем образце. Подобные фазовые переходы со скачкообразным превращением структуры всего образца наблюдаются в углеродистых сталях при переходе аустенита в мартенсит (мартенситные переходы).

Температура магнитного фазового перехода связана с еще одним типом фазового превращения, обусловленного составом железооксидной наносистемы. При в системе сосуществуют обе фазы и , при обе фазы превращаются в одну общую структуру с параметром , отвечающим фазе. При этом по данным рентгеноструктурного анализа кристаллические решетки обеих фаз сохраняются.

Температурная зависимость изомерного сдвига (рис. 5в) показывает резкое изменение этого параметра при . При этом для фазы сдвиг уменьшается, а для фазы возрастает скачком в среднем до 0,45 мм/с. Эти данные свидетельствуют о коллективных превращениях и фаз в единую подобную структуру. Сохранение кристаллических решеток обеих фаз можно объяснить, если предположить образование двойниковой наноструктуры. Такие структуры часто формируются при кристаллизации под действием механических деформаций в результате спекания зародышей. Кроме того, двойникование происходит при быстром тепловом расширении или при нагревании деформированных кристаллов.

Развитие эффектов коллективных превращений фаз и образования двойниковых наноструктур в рассматриваемой двухфазной железооксидной системе можно объяснить следующим образом. В процессе синтеза наносистемы и происходит спекание зародышей оксида железа, что приводит к образованию сильно взаимодействующих кластеров. Сильные межкластерные взаимодействия вызывают, по-видимому, двойниковые коллективные переходы в наносистеме. В результате при изменении температуры происходит своеобразный фазовый переход двухфазной гетерогенной наносистемы оксидов железа в однофазную двойниковую наноструктуру, в которой фаза подстраивается под фазу. При этом происходит перенос электрона от фазы на фазу, что проявляется в возрастании изомерного сдвига. Подобный переход представляет собой новое свойство гетерогенной наносистемы, в которой генератор перехода - кластер, обладающий переходом Морина, вызывает коллективный переход системы в двойниковую наноструктуру.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5221
Авторов
на СтудИзбе
429
Средний доход
с одного платного файла
Обучение Подробнее