149938 (Материалы оптоэлектроники. Полупроводниковые светоизлучающие структуры)

2016-08-01СтудИзба

Описание файла

Документ из архива "Материалы оптоэлектроники. Полупроводниковые светоизлучающие структуры", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "149938"

Текст из документа "149938"

 Ш2

 ш1.5

 1Министерство науки, высшей школы и технической политики РФ

 1Московский Государственный Институт Электроники и Математики

 1Факультет Электронной Техники

 1Кафедра - Материаловедение

 1электронной техники

 1РЕФЕРАТ

 1на тему 3 Материалы оптоэлектроники.

 3Полупроводниковые светоизлучающие структуры. 0

 1Выполнил студент группы И-41

 1Офров С.Г

 1Руководитель Петров В.С.

 1Реферат защищён с оценкой _________

_____________________________

(подпись преподавателя, дата)

 1Москва 1994

 ш0

.

- 1 -

Материалы оптоэлектроники.

Полупроводниковые светоизлучающие структуры.

1. ФИЗИЧЕСКИЕ ОСНОВЫ ОПТОЭЛЕКТРОНИКИ.

1.1. Предмет оптоэлектроники.

Оптоэлектроника представляет собой раздел науки и техники,

занимающийся вопросами генерации, переноса (передачи и приёма),

переработки (преобразования), запоминания и хранения информации

на основе использования двойных (электрических и оптических) ме-

тодов и средств.

Оптоэлектронный прибор - это (по рекомендации МЭК) прибор,

чувствительный к электромагнитному излучению в видимой, инфра-

красной или ультрафиолетовой областях; или прибор, излучающий и

преобразующий некогерентное или когерентное излучение в этих же

спектральных областях; или прибор, использующий такое электро-

магнитное излучение для своей работы.

Обычно подразумевается также "твердотельность" оптоэлек-

тронных приборов и устройств или такая их структура (в случае

использования газов и жидкостей), которая допускала бы реализа-

цию с применением методов современной интегральной техники в

микроминиатюрном исполнении. Таким образом, оптоэлектроника ба-

зируется на достижениях целого ряда достижений науки и техники,

среди которых должны быть выделены прежде всего квантовая элек-

троника, фотоэлектроника, полупроводниковая электроника и техно-

логия, а также нелинейная оптика, электрооптика, голография, во-

локонная оптика.

- 2 -

Принципиальные особенности оптоэлектронных устройств связа-

ны с тем, что в качестве носителя информации в них наряду с

электронами выступают электрически нейтральные фотоны. Этим

обуславливаются их основные достоинства:

1. Высокая информационная ёмкость оптического канала.

2. Острая направленность излучения.

3. Возможность двойной модуляции светового луча - не только

временной, но и пространственной.

4. Бесконтактность, "элетропассивность" фотонных связей.

5. Возможность простого оперирования со зрительно восприни-

маемыми образами.

Эти уникальные особенности открывают перед оптоэлектронными

приборами очень широкие возможности применения в качестве эле-

ментов связи, индикаторных приборов, различных датчиков. Тем са-

мым оптоэлектроника вносит свою, очень значительную, долю в

комплексную микроминиатюризацию радиоэлектронной аппаратуры.

Дальнейшее развитие и совершенствование средств оптоэлектроники

служит техническим фундаментом разработки сверхвыскопроизводи-

тельных вычислительных комплексов, запоминающих устройств ги-

гантской ёмкости, высокоскоростной связи, твердотельного телеви-

дения и инфравидения.

Основу практически любой оптоэлектронной системы составляет

источник излучения: именно его свойства и определяют, в первую

очередь, лицо этой системы. А все источники можно подразделить

на две большие группы: с когерентным (лазеры) и с некогерентным

(светоизлучающие диоды и др.) излучением. Устройства с использо-

ванием когерентного или некогерентного света обычно резко отли-

чаются друг от друга по важнейшим характеристикам.

- 3 -

Всё это оправдывает использование таких терминов как "коге-

рентная оптоэлектроника" и "некогерентная оптоэлектроника". Ес-

тественно, что чёткую грань провести невозможно, но различия

между ними очень существенны.

История оптоэлектроники ведёт своё начало с открытия опти-

ческого квантового генератора - лазера (1960 г.). Примерно в то

же время (50-60-е гг.) получили достаточно широкое распростране-

ние светоизлучающие диоды, полупроводниковые фотоприёмники, уст-

ройства управления световым лучом и другие элементы оптоэлектро-

ники.

1.2. Генерация света.

Оптический диапазон составляют электромагнитные волны, дли-

ны которых простираются от 1 мм до 1 нм. Оптический диапазон за-

мечателен тем, что именно в нём наиболее отчётливо проявляется

корпускулярно-волновой дуализм; энергия фотона и соответствующие

ей частота колебаний и длина волны света связаны следующими со-

отношениями:

 ш1 7

 7)

 7n 0[Гц] = 3 77 010 514 0/ 7l 0[мкм] 7 2

 78

 7e 4ф 0[эВ] = 1,234/ 7l 0[мкм] 7 2

 70

 ш0

При известной удельной мощности P плотность фотонного пото-

ка N определяется выражением

N[м 5-2 0с 5-1 0] = 5,035 77 010 512 77l 0[мкм] 77 0P[мкВт 77 0м 5-2 0].

Все светогенерационные эффекты относят либо к тепловому из-

лучению, либо к одному из видов люминесценции. Спектр излучения

- 4 -

нагретого тела определяется формулой Планка, которая для так на-

зываемого абсолютно чёрного тела имеет вид

f( 7l 0,T) = 2 7p7 0h 77 0c 52 77l 5-5 0[ exp(hc/(kT 7l 0)) - 1] 5-1 0,

где h, c, k - известные универсальные константы; T - абсолютная

температура. При достаточно высоких температурах (>2500...3500 К)

часть спектра теплового излучения приходится на видимую область.

При этом, однако, всегда значителен длинноволновый "хвост".

Люминесценция представляет собой излучение, характеризующе-

еся тем, что его мощность превышает интенсивность теплового из-

лучения при данной температуре ("холодное" свечение).

Известно, что электроны в атоме могут находиться в ряде

дискретных энергетических состояний, при тепловом равновесии они

занимают наинизшие уровни. В люминесцирующем веществе за счёт

энергии того или иного внешнего воздействия часть электронов пе-

реходит на более высокие энергетические уровни E 42 0. Возвращение

этих электронов на равновесный уровень E 41 0 сопровождается испус-

канием фотонов с длиной волны, определяемой простым соотношением:

 ш1

1,23

 7l 0 = ───────────── [мкм]

(E 42 0 - E 41 0)[эВ]

 ш0

Физика люминесценции предопределяет две примечательные осо-

бенности процесса: узкий спектр излучения и возможность исполь-

зования большого числа способов возбуждения. В оптоэлектронике

главным образом используются электролюминесценция (пробой и ин-

жекция p-n перехода в полупроводниках), а также фото- и катодо-

люминесценция (бомбардировка люминофора быстрыми электронами).

При распространении световых лучей важную роль играет диф-

ракция, обусловленная волновой природой света и приводящая, в

- 5 -

частности, к тому, что выделенный с помощью оптической системы

параллельный пучок становится расходящимся, причём угол расходи-

мости близок к  7f 4D 0 = 7 l 0/D , где D - апертура (диаметр луча света).

Дифракционный предел разрешающей способности оптических систем

соизмерим с 7 l 0, а плотность записи информации с помощью световых

потоков не может превысить 7 l 5-2 0.

В веществе с показателем преломления n скорость распростра-

нения светового луча становится c/n, а поскольку величина n за-

висит от длины волны (как правило, растёт с уменьшением 7 l 0), то

это обуславливает дисперсию.

1.3. Источники излучения.

Оптоэлектроника базируется на двух основных видах излучате-

лей: лазерах (когерентное излучение) и светоизлучающих диодах

(некогерентное излучение).

В оптоэлектронике находят применение маломощные газовые,

твердотельные и полупроводниковые лазеры. Разрежённость газового

наполнения в рабочем объёме обусловливает высокую степень монох-

роматичности, одномодовость, стабильность частоты, острую на-

правленность и, в конечном счёте, когерентность излучения. В то

же время значительные габариты, низкий к.п.д., прочие недостатки

газоразрядных приборов не позволяют рассматривать этот вид ОКГ

как универсальный оптоэлектронный элемент.

Значительные мощности излучения твердотельных лазеров обус-

лавливают перспективность применения этих генераторов в дально-

действующих волоконнооптических линиях связи.

Наибольший интерес для разнообразных оптоэлектронных приме-

- 6 -

нений представляют полупроводниковые лазеры благодаря высокому

к.п.д., малым габаритам, высокому быстродействию, простоте уп-

равления. Особенно выделяются гетеролазеры на основе тройного

полупроводникового соединения Ga Al As. В их структуре тонкий

слой n-типа проводимости "зажат" между областями n- и p-типов

того же материала, но с большими значениями концентраций алюми-

ния и соответственно этому большими ширинами запрещённой зоны. В

роли резонатора может также выступать поверхностная дифракцион-

ная решётка, выполняющая функцию распределённой оптической об-

ратной связи.

Для оптоэлектроники особый интерес представляют полупровод-

никовые излучатели - инжекционные (светодиоды) и электролюминес-

центные (электролюминофоры). В первых излучение появляется в ре-

зультате рекомбинации дырок с инжектированными через pn-переход

электронами. Чем больше ток через светодиод, тем ярче его высве-

чивание. В зависимости от материала диода и примесей в нём меня-

ется цвет генерируемого излучения: красный, жёлтый, зелёный, си-

ний (соединения галия с фосфором и азотом, кремния с углеродом и

пр., см. табл.1). Светодиоды на основе соединения галия с мышь-

яком генерируют невидимое излучение с длиной волны 0,9...0,92

мкм. На этой длине волны кремниевые фотоприёмники имеют макси-

мальную чувствительность. Для светодиодов характерны малые раз-

меры (0,3 7& 00,3 мм), большие срок службы (до 100 тыс. ч.) и быст-

родействие (10 5-6 0...10 5-9 0 с), низкие рабочие напряжения (1,6...3,5

В) и токи (10...100 мА).

.

- 7 -

 ш1.5

 Л+

Таблица 1. Основные материалы для светодиодов.

╔════════════╤══════╤══════════╤═════════╤═════════════════╗

║ Полупро- │  4o 0  5  0│ Цвет │Эффектив-│ Быстродействие, ║

║ водник │  7l 0,A │ │ность, % │ нс ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ GaAs │ 9500 │ ИК │ 12; 50 5* 0 │ 10 5-7 0...10 5-6 0 ║

║ │ 9000 │ │ 2 │ 10 5-9 0...10 5-8 0 ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ GaP │ 6900 │ Красный │ 7 │ 10 5-7 0...10 5-6 0 ║

║ │ 5500 │ Зелёный │ 0,7 │ 10 5-7 0...10 5-6 0 ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ GaN │ 5200 │ Зелёный │ 0,01 │ ║

║ │ 4400 │ Голубой │ 0,005 │ ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ GaAs 41-x 0P 4x 0 │ 6600 │ Красный │ 0,5 │ 3 77 010 5-8 0 ║

║ │ 6100 │ Янтарный │ 0,04 │ 3 77 010 5-8 0 ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ Ga 41-x 0Al 4x 0As │ 8000 │ ИК │ 12 │ 10 5-8 0 ║

║ │ 6750 │ Красный │ 1,3 │ 3 77 010 5-8 0 ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ │ 6590 │ Красный │ 0,2 │ ║

║ In 41-x 0Ga 4x 0P │ 6170 │ Янтарный │ 0,1 │ ║

║ │ 5700 │ Желто- │ 0,02 │ ║

║ │ │ зелёный │ │ ║

╚════════════╧══════╧══════════╧═════════╧═════════════════╝

 ш0

 Л-

Излучатели на основе люминофоров представляют собой порош-

ковые или тонкоплёночные конденсаторы, выполненные на стеклянной

прозрачной подложке. Роль диэлектрика выполняет электролюминофор

на основе соединения цинка с серой, который излучает свет под

действием сильного знакопеременного электрического поля. Такие

светящиеся конденсаторы могут изготовляться различных размеров

(от долей сантиметра квадратного до десяти и более квадратных

метров), различной конфигурации, что позволяет изготавливать из

- 8 -

них знако-буквенные индикаторы, отображать различные схемы, кар-

ты, ситуации.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее