fizika (Электричество и человек), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Электричество и человек", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "fizika"

Текст 2 страницы из документа "fizika"

В биологических системах электроны имеют минимальные значения энергии, когда они связаны с кислородом в молекуле воды. С энергетической точки зрения вода – основа жизни всего организма. Поэтому можно принять ее ионизационный потенциал за исходный и вести отсчет энергии от него. Относительно значения ионизационного потенциала воды можно найти значения потенциалов всех биологических соединений. Получится шкала ионизационных потенциалов – её еще называют шкалой биопотенциалов. Под ионизационным потенциалом понимают энергию того электрона, у которого энергия связи минимальна.

Таким образом, биопотенциал – это ионизационный потенциал биологических соединений, характеризуемый исключительно малым значением энергии связи. Но взаимодействие между элементарными частицами на этих уровнях энергии обуславливают макроявления, выражающиеся, в частности, в суммарной биоэлектрической активности, при которой разность потенциалов достигает единиц милливольт. Изменения же этой разности отображают нормальные и патологические процессы, возникающие в организме. Разность потенциалов свидетельствует о реакции организма на факторы внешней среды, а «перемещение» электричества по организму – о временном последствии внешних факторов.

Особенностью электрофизических свойств белковых и других биообъектов является также огромная подвижность зарядоносителей. Результаты, позволяющие установить это, получены путем применения к белковым соединениям теории потенциального барьера.

По-видимому, в этом случае большое значение имеют углеродно-кислородные и азотно-водородные связи. В такой системе водородных связей возбужденный электрон посредством туннельного эффекта может проникать через потенциальный барьер, а следовательно, мигрировать по всей системе белковой молекулы. Это приводит к значительному суммарному смещению электрона и обуславливает его подвижность, делая белковую систему высокопроводящей.

Организм и биоэлектрический ток

Особенности электрофизических явлений в биообъектах позволяют утверждать, что носителями зарядов в белках и других элементах живого организма являются ионы, которые в совокупности с системой электронно-дырочной проводимости создают единую, присущую только живому организму проводимость. При увеличении количества воды зарядоносителями могут преимущественно быть протоны, в высушенных белках – преимущественно электроны. Но установлено, что включенное в состав белка некоторое количество вещества, содержащего хлор, названного хлорамином, играет роль акцептора. Оно повышает собственную проводимость белка в миллион раз, но добавление вместо него некоторого количества воды уменьшает проводимость в 10 раз.

Наряду с белками в организме важную роль играют нуклеиновые кислоты. По своей структуре, водородным связям и другим элементам они отличаются от белковых соединений, но имеют аналоги среди небиологических веществ (графит). Для них характерны общие электрофизические свойства белковых соединений. Так энергия связи находится в пределах 2,5 эВ. Удельная проводимость велика, но на несколько порядков меньше проводимости белков. Несколько ниже и подвижность зарядоносителей. Но в целом электрофизические характеристики и явления, их вызывающие, имеют общие закономерности с аналогичными характеристиками белков.

Нуклеиновые кислоты обладают присущими только им свойствами. Удалось установить, что нуклеиновые кислоты имеют пьезоэлектрические и термоэлектрические свойства. Оказалось, что эти свойства в значительной степени обусловлены наличием воды. Изменением её количества можно менять и пьезоэлектрические свойства. Исследование явлений электропроводимости с помощью данной методики еще раз подтвердило наличие и у этих веществ пока не характеризуемо точно специфической проводимости.

Постоянно изменяющееся возбужденное их состояние оказывает специфическое влияние на подвижность и движение электронов и ионов в живом организме.

Сказанное, прежде всего, относится к нервной ткани, и особенно к центральной нервной системе. Только сложностью такого наложения и совмещения биоэлектрофизических явлений можно объяснить исключительно малую скорость распространения ответных реакций организма на воздействие некоторых факторов окружающей среды. Именно малая скорость защитных реакций и объясняет, почему столь микроскопическая доза яда как 0,0000007 мг, может погубить человека при ботулизме.

Электрическая активность мозга оценивается импульсами напряжения различной частоты и спектральной плотности биопотенциалов. После изучения ритмов (импульс в секунду) нескольких тысяч людей, животных была получена следующая закономерность:

Дельта-ритм…………0,5 – 0,3

Тета-ритм……………4 – 7

Альфа-ритм………….8 – 13

Бета-ритм……………14 – 35

Гамма-ритм………….35 – 55

Амплитуда этих импульсов находиться в пределах 500 мкВ. Получить такие импульсы от зарядоносителей только ионного типа невозможно. Электрохимические источники тока инерционны. Таких изменений электрических величин во времени, даже при малых амплитудах ионной проводимости непосредственно не получится. Это уже может быть отнесено к прямым доказательствам наличия в мозгу и нервной системе в целом электронного движения зарядоносителей.

И не случайно эффективность метода дефибрилляции сердца связывают с формой кривой импульса подаваемого напряжения, а также его спектральной плотностью. Таким образом, при дефибрилляции происходит упорядочение, восстановление присущего всему живому движения зарядоносителей – восстановление электропроводимости.

Авторы дефибрилляционного метода восстановления предполагают, что при подаче напряжения на электроды, наложенные на область сердца, импульсы будут действовать непосредственно на сердечную мышцу. Не отрицая возможности такого положения, необходимо добавить, что имеет место также воздействие импульсов на сердце через центральную нервную систему, по которой импульс тока достигает жизненно важных регулирующих центров нервной системы. Нервная система обладает значительно большей проводимостью, чем мышечная ткань и система кровообращения; она взаимодействует со всем, что обуславливает жизнедеятельность, намного опережая другие системы организма по быстроте реакции на любой, и в первую очередь электрический раздражитель. Таким образом, доминирующим в процессе восстановления последовательности сокращения сердца лежит восстановление специфического движения зарядоносителей, присущего живому.

Далее, уже давно обнаружено резкое изменение сопротивления по действием внезапных раздражающих факторов. Например, при испуге, резкой вспышке света, взрыве сопротивление тела человека резко уменьшается. При этом восстановление сопротивления к его первоначальному уровню происходит довольно медленно, при этом наблюдается зависимость от характера раздражения. Если бы тело человека обладало только ионной проводимостью электролита, т.е. проводимостью, связанной с переносом вещества, то процесс изменения электрического сопротивления проходил бы гораздо медленнее. Быстрое изменение сопротивления может объясниться только наличием в «суммарном» электрического сопротивлении сопротивления, обусловленного той или иной электронной проводимости. Новые достижения электротехники соответственно расширили возможности исследования «животного» электричества. Итальянский физик Маттеучи, применив созданный к тому времени гальванометр, доказал, что при жизнедеятельности мышцы возникает электрический потенциал. Разрезав мышцу поперек волокон, он соединил поперечный разрез ее с одним из полюсов гальванометра, а продольную поверхность – с другим и получил потенциал в пределах 10 – 80 мВ. Значение потенциала обусловлено видом мышц. Затем французский физик Пельтье опубликовал результаты работы по исследованию взаимодействия биопотенциалов с протекающим по живой ткани постоянным током. Оказалось, что полярность биопотенциалов при этом меняется. Изменяются и амплитуды биопотенциалов, и частоты возникающих импульсов.

На приведенных примерах легко увидеть, что все клетки, входящие в состав организма, связываются между собой сетями электрических импульсов.

Биоэлектричество и ткани, органы

Электричество и кожа

Существование и развитие человека невозможно без непрерывного взаимодействия с окружающей средой. Влияние внешней среды на человека обычно рассматривается на примере действия электрического тока и магнитного поля. Причем это не случайно. Энергия любого из этих факторов так или иначе преобразуется в электрическую, которая, взаимодействуя с электричеством человека, и обуславливает реакцию человека на действие внешнего фактора.

Преобразование энергии взаимодействующих факторов в электрическую подчиняется определенной передаточной функции. Основные процессы преобразования, описываемые передаточной функцией, происходят через кожу. Кожа является источником информации о состоянии органов и тканей человека и в то же время – первозащитной оболочкой человека от вредного воздействия среды.

Кожа, осуществляющая столь сложную связь в системе среда – человек, представляет собой трехкомпонентную структуру, образованную эпидермисом, дермой и подкожной жировой клетчаткой, которые находятся в функциональном разрезе. Самым тонким слоем является эпидермис. Несмотря на незначительные размеры, он обладает наиболее ответственными функциями – защитной и информирования о состоянии органов и тканей. Информация необходима для саморегуляции ряда биофизических процессов в организме, прежде всего тепловых и биоэлектрохимических.

Это плоский, тонкий, ороговевший слой. Представляет собой пограничную часть с многообразными сложными барьерно-информативными функциями. Одна из основных функций – защита от проникновения в организм чужеродных, не свойственных ему микробов, аэрозольной пыли. Он способствует защите тканей и органов от проникновения ультрафиолетового и коротковолнового рентгеновского излучения. Структурные особенности эпидермиса обеспечивают ему высокую упругость, эластичность. Он имеет большую механическую прочность, что позволяет ему выдерживать большие механические нагрузки. Обладая высокими регенерационными свойствами способен при повреждениях быстро восстанавливаться. Благодаря удивительным и многообразным видам электропроводимости он имеет исключительно высокую рецепторную защитную способность.

Кожу многие ученые представляют как топографическую связь отдельных участков эпидермиса со всеми органами человека. В эпидермисе находятся акупунктурные зоны – точки и участки кожи, обладающие отличным от основного состава эпидермиса значением проводимости. Значит, есть различие и в свойствах этих точек. Через эти зоны в основном и осуществляется связь эпидермиса с внутренними органами. Возникновение электрической цепи через область эпидермиса в акупунктурных зонах может привести к смертельному исходу даже при очень маленьком напряжении. В то же время очень распространено воздействие на эти точки иглами с целью лечения или усиления некоторых функций организма – иглотерапия.

Свойства кожи уникальны и удивительны. Уже давно было обнаружено, что клетки чистой кожи убивают болезнетворные бактерии и микробы, попадающие на ее поверхность на воздухе, и в то же время через мокрую кожу могут свободно проходить эти же микробы. Чем это вызвано?

Эпидермис – поверхностный слой кожи относится к диэлектрикам, обладающим огромным удельным сопротивлением, достигающим 1014 Ом и большим значением диэлектрической проницаемости. Под влиянием разности температур внутренних органов и окружающей среды возникает диффузия «электрического газа». При прохождении газа через место ранения, обладающего высоким удельным сопротивлением и большой диэлектрической проницаемостью, появляется статическое электричество. Напряженность поля может достигнуть десятка киловольт на 1 квадратный сантиметр. При такой напряженности клеточные мембраны разрушаются и бактерии погибают. Для разрушения нейрона или клетки достаточна электрическая энергия поля в пределах 10-20 Дж. Это свидетельствует о том, что кожа является своеобразным электростатическим фильтром, подобным электростатическому фильтру, применяемому в системах жизнеобеспечения для замкнутых помещений, представляя собой стерилизатор. Но все это происходит при условии, что сопротивление кожи поддерживается на очень высоком уровне. При наличии воды на коже или повышенной влажности кожи такое электростатическое поле возникнуть не может – нет и «стерилизатора». Следовательно, электричество человека служит очень хорошим стражем от поражения микроорганизмами – бактериями окружающей человека воздушной среды.

Для стимуляции сердечной мышцы применяются специальные приборы – электростимуляторы. Речь о них пойдет ниже. Для их питания можно применять специальные аккумуляторы. Тогда необходимо вывести проводники через кожу – для заряда аккумуляторов. Можно пользоваться и специальными батареями. Но их нужно часто заменять. И то и другое очень неудобно. Поэтому ученые стали искать новые источники энергии для стимуляторов. И нашли. Им оказалась… кожа. Биоисточник, каковым является кожа, может генерировать токи напряжением до десятков милливольт и даже больше. Такие биотоки конечно малы. Но для работы стимуляторов нужна совсем небольшая мощность источника питания. Поэтому даже такие напряжения оказываются достаточными. Возник другой вопрос, – как осуществить съем энергии? Для этого был предложен ряд способов. Биоэлектричество можно снимать непосредственно с кожи теми же электродами, какие применяются для снятия электрокардиограмм. От электродов, прилегающих к коже, посредством проводников электричество подается к потребителю. Но осуществить подобное очень сложно: нужно провести провода через кожу, следить, чтобы они не порвались при выполнении какой-либо работы. Да и сила тока, снимаемого таким образом, достигает всего нескольких десятков милливольт. Значительно удобнее электроды, вживляемые непосредственно в кожу. Электроды выполняются из платины, золота или титана. Напряжение при этом достигает 2 вольт. Получаемая мощность вполне достаточна для описываемых целей.

Звук

Звук – одно из многочисленных явлений, характеризующих окружающую среду, в которой возникла жизнь, существует живое, живет человек. В далекие времена уходит начало изучения тайны звуков окружающего мира.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее