LECTURE (Физика), страница 7

2016-08-01СтудИзба

Описание файла

Документ из архива "Физика", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "LECTURE"

Текст 7 страницы из документа "LECTURE"

;

она меньше скорости движения Земли, которую эфир имел бы, если бы он не увлекался прозрачной средой. Вследствие переносного движения, фронт волны , распространяющийся в прозрачной среде вертикально вниз до экрана со скоростью — скоростью света в среде — за время

,

при попадании на экран будет снесен в горизонтальном направлении влево на расстояние

Получили для отрезка тот же результат, что и выше, когда делали предположение, что движение эфира отсутствует.

Таким образом мы должны сделать вывод, что движение рассматриваемого оптического прибора вместе с Землей со скоростью сквозь неподвижный эфир никак не сказывается на ходе лучей в нем; закон преломления остается таким же. Луч, приходящий от звезды, ведет себя в точности так же, как и луч такого же направления, идущий от земного источника.

  1. Геометрическая оптика неоднородной прозрачной среды, пронизываемой движущимся через нее эфиром. Теорема Лоренца.

Свою оптико-геометрическую теорию движущихся вместе с Землей оптических приборов Лоренц развил в 1886 г. с целью объяснения следующих трех к тому времени уже твердо установленных опытных фактов:

  1. существует явление астрономической аберрации положений звезд, заключающееся в том, что звезды в течение года описывают на небе маленькие эллипсы (переходящие в окружности для звезд, находящихся вблизи полюса эклиптики, и дважды покрытые отрезки для звезд, находящихся вблизи экватора эклиптики);

  2. свет от любой звезды, фиксируемый на Земле как свет, приходящий по определенному направлению и определенной частоты, будучи использованным в любых оптических экспериментах — по отражению, по преломлению, по интерференции и т.д., ведет себя в точности так же, как и свет от земного источника, распространяющийся по тому же направлению и обладающий той же частотой;

  3. ни в одном оптическом эксперименте, который можно произвести с земным источником света, нельзя наблюдать никакого эффекта, связанного со скоростью движения Земли на ее орбите вокруг Солнца, если ограничиться членами первого порядка малости по , где — скорость света в пустоте.

Любой как угодно сложный оптический прибор, содержащий линзы, призмы, щели, диафрагмы и т.д., можно считать кусочно однородной средой (т.е. средой, состоящей из пространственных областей с разными показателями преломления). Будем, однако, следуя Гамильтону, полагать, что имеем дело не с такой специфической кусочно-однородной, а с произвольной оптически неоднородной средой, оптические свойства которой характеризуются заданной функцией локального показателя преломления , где — показатель преломления в точке среды с координатами .

Среду будем считать твердой, прозрачной, неподвижной и жестко связанной с Землей, движущейся сквозь эфир, покоящийся в мировом пространстве.

Лоренц проводит рассуждение в декартовой прямоугольной системе координат , жестко связанной со средой и с Землей. При этом он предполагает, что Землю и прозрачную среду пронизывает “эфирный ветер”, характеризующийся стационарным (не зависящим от времени) полем скоростей .

Таким образом Лоренц берет развитую им самим обобщенную формулировку принципа Гюйгенса, учитывающую, что эфир движется относительно прозрачной среды, в которой мы исследуем распространение световых волн, т.е. что в среде имеется эфирный ветер.

Как при формулировке обычного принципа Гюйгенса, для неподвижного эфира, возьмем два бесконечно близких положения волнового фронта, или фронта волны, распространяющейся в покоящейся относительно Земли, но движущейся относительно мирового пространства среде, увлекающей с собой частично эфир, в два бесконечно близких момента времени t и t+dt. Пусть эти положения характеризуются двумя геометрическими поверхностями S и S1, см. рис.


Чтобы исходя из поверхности волнового фронта S построить поверхность волнового фронта S1, надо взять каждую точку P на поверхности S и мысленно испустить из этой точки в момент времени t т.е. взять бесконечно малую поверхность около точки P, до которой к моменту времени t+dt это возмущение дошло. Такую поверхность назовем фронтом элементарной волны. На приведенном рисунке кривая ab изображает часть поверхности фронта элементарной волны, испущенной из точки P, рассматриваемой в момент времени t+dt.

Согласно принципу Гюйгенса, поверхность S1 ,будет геометрической огибающей поверхностью фронтов всех элементарных волн, построенных для всех точек P поверхности S.

Одновременно с построением положения последующего фронта волны мы узнаем и дальнейший ход всех лучей. Прямой отрезок, проведенный из точки P на поверхности P, являющейся центром испускания элементарной волны, в точку P1, расположенную на поверхности S1 и являющуюся точкой касания этой элементарной волной огибающей поверхности S, является элементом луча. Один из элементов луча изображен отрезком PP1 на рисунке.

Точки P и P1, принадлежащие соответственно поверхностям S и S1 и являющиеся началом и концом одного и того же элемента луча, называются сопряженными точками.

При помощи геометрического построения Гюйгенса можно найти последовательные положения S, S1,S11,... фронта распространяющейся волны и последовательные элементы PP1,P1P11,P11P111,... любого луча. Каждый такой луч проходит через ряд сопряженных точек, следующих одна за другой через бесконечно малые расстояния.

В случае отсутствия в среде эфирного ветра каждая из рассмотренных бесконечно малых элементарных волн представляет собой бесконечно малую сферу радиуса c1t, с центром, расположенным в соответствующей точке P, где c1 - локальная скорость света в точке P среды. Для неоднородной среды скорость света является заданной функцией с11(x,y,z) точки среды и поэтому различные элементарные волны будут иметь разные радиусы, см. рис.

В случае наличия в среде эфирного ветра элементарные волны тоже являются бесконечно малыми сферическими поверхностями, но эти поверхности теперь непрерывно сносятся движением эфира, и поэтому центры их в момент времени t+dt располагаются не в точках P испускания волн, а в бесконечно мало сдвинутых точках Q, которые находятся на бесконечно малых, прямолинейных отрезках PR, вдоль точки P эфира перемещаются при его движении за интервал времени t, t+dt. Отрезок PR имеет длину v·dt, где v - скорость эфира в точке P и он направлен вдоль вектора скорости v эфирного ветра в этой точке P. Радиусы сфер элементарных волн, однако, все равно равны c1·dt, как в неподвижной среде, см. рис.

Точка Q может находиться и в начале (Q=P), и в конце (Q=R) отрезка PQ, а также может лежать и внутри этого отрезка. Соответственно Лоренц пользуется одной из следующих гипотез.

а) Если Q=P, то эфир не увлекается движущейся средой.

б) Если Q=P, то эфир полностью увлекается движущейся средой.

в) Если PQ=(1/n2)PR, то эфир частично увлекается движущейся средой; здесь n - локальный показатель преломления для неподвижной среды в точке P.

Рассмотрим теперь важный частный случай движения Земли и прозрачной Среды, когда они движутся в мировом пространстве поступательно равномерно прямолинейно вдоль некоторого направления с некоторой постоянной скоростью v.

Длина отрезка PQ теперь равна причем направления отрезков PR и скорости v во всех точках P будут одинаковы.

Для частного случая поступательного равномерного прямолинейного движения Земли и прибора сквозь мировой эфир Лоренц доказал следующую замечательную теорему.

Теорема Лоренца. С точностью до членов первого порядка включительно по отношению скоростей v/c, где v - поступательно равномерного прямолинейного движения оптического прибора через неподвижный эфир, с - скорость света в пустоте, геометрический ход лучей в оптическом приборе не зависит от движения среды.


Приступим к доказательству сформулированной теоремы. Рассмотрим ход лучей в приборе относительно декартовых прямоугольных осей координат Oxyz, жестко связанных с ним. Прибор движется равномерно прямолинейно поступательно с постоянной скоростью v через неподвижный эфир.

Обратимся еще раз к рассмотренному выше рисунку. Обозначим РP1PQ между направление светового луча, исходящего из точки P, и направлением движения среды - через q, см. рис.

На рисунке полупрямая QP направлена вдоль направления эфирного ветра. Согласно теореме косинусов, примененной к DP1PQ, имеем следующее соотношение . Отрезок P1Q, согласно лоренцеву принципу Гюйгенса, равен c1·dt, где c1 - локальная скорость света в точке P. Отрезок PQ, согласно тому же принципу, равен k·v·dt, где k=1/n2, n - локальный показатель преломления в точке P, v - скорость эфирного ветра. Отрезок PP1 равен с1дв·dt, где с1дв - локальная скорость света в точке P для Среды с эфирным ветром. Таким образом, приведенное соотношение можно представить в следующем виде:

или в виде квадратного уравнения из которого можно определить скорость с1дв. Решая это квадратное уравнение получим очевидно перед корнем надо взять знак плюс, иначе получили бы отрицательное значение для скорости с1дв. Считая скорость v движения среды через неподвижный эфир или, что то же самое, скорость эфирного ветра малой по сравнению со скоростью света с и разлагая корень в ряд по малости v2, имеем Следовательно, с точностью до членов третьего порядка малости по v/c получаем приближенную формулу . Из этой формулы сразу выведем еще одну приближенную формулу, которая нам понадобится в дальнейшем: или справедливо с точностью ло членов порядка малости v3/c31.

Определив, с помощью лоренцева обобщенного принципа Гюйгенса, скорость с1дв распространения света по лучу для поступательно равномерно прямолинейно движущейся прозрачной среды, воспользуемся теперь принципом Ферма для определения хода лучей в оптическом приборе, жестко связанном с движущейся Землей и перемещающимся вместе с ней. Согласно принципу Ферма, для истинного пути L светового луча, выходящего из какой-то фиксированной точки А и приходящего в другую фиксированную точку В, криволинейный интеграл представляющий собой время распространения света по лучу, должен принять минимальное значение. Здесь ds - длина элемента дуги кривой ALB.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5232
Авторов
на СтудИзбе
424
Средний доход
с одного платного файла
Обучение Подробнее