149778 (Теорема Нетер)

2016-08-01СтудИзба

Описание файла

Документ из архива "Теорема Нетер", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "149778"

Текст из документа "149778"

Министерство образования Украины

Донбасский горно-металлургический институт

Кафедра Общей и прикладной физики

Курсовая работа

на тему:

Теорема Нётер

выполнил:

студент группы ПФ-99

Антропов Иван Иванович

руководитель:

доцент кафедры ОПФ

Мурга В.В.

Алчевск 2001

Содержание

Введение 3

1. Асимптотическая аддитивность интегралов движения. Формулировка теоремы Нётер. 4

2. Доказательство теоремы Нётер 6

3. Некоторые замечания относительно теоремы Нётер 11

Вывод 12

Список использованной литературы


Введение

Всякое равенство вида называется интегралом движения. Для замкнутой системы с n степенями свободы всего существует независимых интегралов движения. Если считать в уравнениях движения новыми переменными, не зависящими от , то полный набор уравнений движения запишется в виде

, (1)

причем для замкнутой системы время здесь войдет только в виде явно выписанных дифференциалов. Поэтому исключая из этих уравнений dt, мы получим уравнений, не содержащих времени. Их интегрирование приведет к интегралам движения.

1. Асимптотическая аддитивность интегралов движения. Формулировка теоремы Нётер.

Среди всех интегралов движения особое значение имеют аддитивные или асимптотически аддитивные интегралы движения, для которых существует специальное название – законы сохранения. Если рассмотреть две системы, находящиеся очень далеко друг от друга, то физически очевидно, что процессы в одной системе совсем никак не должны влиять на движение другой. Поскольку, с другой стороны ничто не мешает нам рассматривать две такие системы как две части, I и II, единой общей системы, то мы приходим к условию асимптотической аддитивности, который заключается в следующем: если некоторая система (I + II) разделяется на две подсистемы таким образом, что минимум расстояния между материальными точками разных подсистем , то ее функция Лагранжа распадается на сумму функций Лагранжа обеих подсистем:

. (2)

Законы сохранения имеют глубокое происхождение, связанное с инвариантностью описания механической системы относительно некоторой группы преобразований времени и координат. Существует теорема Нётер, утверждающая, что для системы дифференциальных уравнений, которые могут быть получены как уравнения Эйлера из некоторого вариационного принципа, из инвариантности вариационного функционала относительно однопараметрической непрерывной группы преобразований следует существование одного закона сохранения. Если группа содержит l параметров, то из инвариантности функционала будет следовать существование l законов сохранения.

Наличие входящих в требуемую теоремой Нётер группу преобразований симметрии зависит от природы физической системы. Для рассматриваемых замкнутых систем действие должно быть инвариантным относительно семипараметрической группы преобразований – зависящего от одного сдвига по времени, зависящих от трех параметров пространственных сдвигов и зависящих от трех параметров вращения пространства. В соответствии с этим у всякой замкнутой системы должны существовать 7 сохраняющихся величин, отвечающих указанным преобразованиям. Если система такова, что она допускает еще и другие преобразования симметрии, то сохраняющихся величин может оказаться больше.

2. Доказательство теоремы Нётер

Точно сформулируем и докажем теорему Нётер.

Рассмотрим некоторую систему, описываемую функцией Лагранжа

. (3)

Форма уравнений Лагранжа-Эйлера, получаемых из вариационного принципа с такой функцией Лагранжа, инвариантна относительно преобразований вида , а также и относительно более общих преобразований

(4)

включающих замену независимой переменной. Однако конкретный вид для нового выражения для действия, как функционала новых координат, зависящих от нового времени, может претерпеть при таком изменении любые изменения.

Теорема Нётер интересуется только тем случаем, когда таких изменений не происходит.

Итак, будем считать, что мы ввели совокупность зависящих от (для простоты) одного параметра l преобразований обобщенных координат и времени.

Используя (4), получим:

(5)

Пусть преобразования такие, что

(6)

т.е. образующих однопараметрическую группу. Рассмотрим бесконечно малое преобразование, отвечающее параметру .

Тогда

(7)

Собственно вариации обобщенных координат, происходящие при рассматриваемом преобразовании, – это разность значений новых координат в некоторый момент нового времени и значений старых координат в соответствующий момент старого времени, т.е.

. (8)

Наряду с ними удобно ввести в рассмотрение вариации формы

(9)

зависимости координат от времени, которые отличны от нуля, даже если наше преобразование затрагивает только время, а не координаты.

Для любой функции справедливо соотношение:

.

Тогда между двумя введенными видами вариаций есть соотношение, которое можно получить следующим образом: вычтем из (8) уравнение (9), получим:

,

примем во внимание, что

,

тогда имеем:

(10)

Вариации без звездочек, относящиеся к одному значению аргумента, перестановочны с дифференцированием по времени

,

в то время, как для вариаций со звездочками это, вообще говоря, неверно.

Соответствующие два вида вариаций можно ввести и для любой динамической переменной. Например, для функции Лагранжа

(11)

причем

(12)

где включает дифференцирование как по явно входящему времени, так и по времени, входящему неявно, через координаты и скорости.

Потребуем теперь, чтобы интеграл действия не менялся бы при нашем преобразовании, – это и есть тот исключительный случай, который требуется условием теоремы, – т.е. чтобы было

, (13)

где Т' – та же область интегрирования, что и Т во втором интеграле, но выраженная через новые переменные. Тогда подставив (11) в (13), получим

(14)

Выражаем в (15) через (11) и учитывая соотношение

,

переходя к интегрированию по t вместо t', получим:

Учитывая, что

,

получим:

(15)

Но

(16)

Найдем дифференциал

,

отсюда

(17)

Подставив (17) в (16), получим:

Под знаком первой суммы стоит уравнение Лагранжа, т.е.

Тогда имеем:

(18)

Подставим полученное значение вариации функции Лагранжа в (15), имеем:

Из (10) выразим через и :

Тогда вариация действия

(19)

Мы должны потребовать равенства этой вариации нулю. В силу произвольности области интегрирования Т из равенства нулю интеграла следует равенство нулю подынтегрального выражения, т.е. мы приходим к тому, что необходимым и достаточным условием инвариантности действия относительно преобразования (7) служит удовлетворение уравнения

.

Заменим и , используя соотношения (7) и (8), имеем:

Вынесем l за скобки и разделим на нее обе части уравнения. Окончательно получим необходимое условие:

(20)

Другими словами, из инвариантности действия относительно (7) мы получили то следствие, что величина

(21)

остается постоянной во времени. Это и есть точное утверждение теоремы Нётер.

3. Некоторые замечания относительно теоремы Нётер

1. Величина (21) еще не является динамической величиной – кроме обобщенных координат, скоростей и времени она зависит еще и от задающих преобразований функций . (21) станет динамическим законом только тогда, когда сами задающие (7) функции будут (помимо параметров) зависеть только от .

2. Обратим внимание на разный характер двух членов в (21). Первый из них включает саму функцию Лагранжа, поэтому обязательно перепутывает все степени свободы системы и поэтому может обладать самое большое асимптотической аддитивностью (2). Напротив, второй имеет явную форму суммы по отдельным степеням свободы. Таким образом, если преобразование, относительно которого действие инвариантно, затрагивает время, то мы можем надеяться на сохранение только асимптотически аддитивной величины, если же преобразование меняет лишь координаты, то сохраняться будет точно аддитивная величина.

Вывод

Таким образом, была сформулирована и доказана теорема Нётер. Существенно то, что теорема Нётер позволяет, при заданном виде функции Лагранжа, найти аддитивные интегралы движения в виде явных функций координат и скоростей, не интегрируя никаких уравнений, ведь в общем случае каждый из интегралов движения находится только интегрированием системы, число уравнений которой только на одно меньше полной системы уравнений движения.

Список использованной литературы

  1. Медведев Б.В. Начала теоретической физики. Механика. Теория поля. Элементы квантовой механики: Учебн. Пособие для вузов. – М.: Наука, 1977. – 496 с.

  2. Ландау Л.Д., Лифшиц Е.М. Механика. Электродинамика: Краткий курс теоретической физики. Кн. 1. – М.: Наука, 1969 – 271 с.

  3. Рымкевич П.А. Курс физики [Для физ-мат фак. пед. институтов] Изд. 2-е, перераб и доп. М.: Высшая школа, 1975.


13


Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
443
Средний доход
с одного платного файла
Обучение Подробнее