bbolid (Определение коэффициента поверхностного натяжения методом компенсации давления Лапласа), страница 3

2016-08-01СтудИзба

Описание файла

Документ из архива "Определение коэффициента поверхностного натяжения методом компенсации давления Лапласа", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "bbolid"

Текст 3 страницы из документа "bbolid"

Установка, изображённая на рисунке, служит для определения постоянной поверхностного натяжения жидкости методом капель. В качестве исследуемой жидкости удобнее всего взять дистиллированную воду. Работа проводится в такой п оследовательности:

1) При помощи масштабной линейки измеряют диаметр канала стеклянной трубки, причём на глаз отсчитывают десятые доли миллиметра. В таком случае погрешность измерения не будет превышать 0,2 мм.

2) Взвешивают химический стаканчик для собирания капель с точностью до сотых долей грамма.

3) Закрывают кран и наливают воду. Подставляют под трубку колбу и, приоткрывая кран, добиваются, чтобы капли падали достаточно медленно1. Тогда можно считать, что отрывание капель происходит только под действием веса.

После этого под трубку подставляют стаканчик2 и отсчитывают в него несколько десятков капель.

4) Вторично производят взвешивание стаканчика и находят массу воду.

Чтобы получить постоянную поверхностного натяжения, пользуются уравнением

, (2)

где М – масса воды, n – число капель, D – диаметр канала трубки, g – ускорение силы тяжести.

Приводим примерные результаты, полученные из опыта:

масса пустого стаканчика М1=22,620,01 г,

масса стаканчика с водой М2=30,970,01 г,

масса воды М=8,350,02 г,

количество капель n=100,

диаметр отверстия трубки D=0,350,02 см.

Тогда

74 дн/см. (3)

Количество капель как результат счёта есть точное число. Если взять =3,14 и g=981 см/сек2, то относительные погрешности этих величин так же, как и для массы капли, будут слишком малы по сравнению с относительной погрешностью измерения диаметра канала трубки, чтобы заметным образом повлиять на величину относительной погрешности результата. Поэтому можно принять

; (4)

следовательно,

, или приблизительно 6%.

Таким образом,

=740,064,4 дн/см и

=744 дн/см.

Определение поверхностного натяжения при помощи рычага

Для производства работы по этому способу нам понадобится:

1) рычаг, весьма лёгкий и подвижный; 2) гирька в 1 г или заменяющий её грузик, сделанный из жести или проволоки такого же веса; 3) скобочка; 4) стакан; 5) штатив для подвеса рычага [5].

Скобочку мы делаем из звонковой проволоки так, чтобы воздушное расстояние между точками А и F или, что то же самое, между точка В и Е было равно 5 см, а величины АВ и ЕF были около 55 мм. к петле D мы привяжем нитяную петлю, которую будем надевать на рычаг (рис. 18, а).

Р аботу производим следующим образом. Уравновешиваем на рычаге скобочку и гирьку в 1г, привязанную тоже на нити, и отмечаем в тетради соответствующие плечи с и а (рис. 18, б). Затем погружаем скобочку в стакан с водой, причём подвешиваем рычаг так, чтобы в равновесии он вытягивал скобочку на высоту 3-4 мм из воды и образовал бы водяную плёнку. В этом случае при том же самом плече с для равновесия рычага понадобится большая сила, т.е. придётся переместить гирьку в 1 г далее на новое плечо b (рис. 18, б).

Допустим, что все скобочки равен Р и поверхностное натяжение жидкости . Будем помнить, что за линию ВСЕ будут тянуть вниз две жидкие плёнки, следовательно, их сила будет равна 25=10. Таким образом, мы можем написать два равенства моментов, полагая 1 г=1000 мг.

Равновесие на воздухе Рc=1000а (5)

с плёнкой (Р+10)=1000b. (6)

Вычитая (2) из (1), мы получим:

10с=(b-a)1000,

откуда

мг/см). (7)

Следует заметить, что употребление кольца вместо скобочки не улучшит, ухудшит точность вычислений, так как при вытягивании кольца из жидкости образуется не цилиндр, что было бы удобно для расчёта, а некоторая конусообразная поверхность. Последнее происходит по той причине, что поверхность плёнки имеет стремление сократиться. Скобка, побывавшая в одной жидкости, должна быть хорошо отмыта для употребления в другой, иначе она, растворив своё содержимое, исказит значение  у другой жидкости.

Несомненно, что вычисление можно проделать и с другими плечами a, b и с.

Определение поверхностного натяжения при помощи динамометра

Данную работу можно провести с динамометром типа весов Жоли или подобным им по чувствительности.

Такой динамометр можно изготовить самим.

На доске размерами 5 см  10 см укрепляем пружинку из жёсткой проволоки диаметром 0,4 мм, с числом витков около 10. К петле свободного усика пружинки привязываем нить с лёгким крюком. Около того места, где находится конец усика, врезаем узенькую зеркальную полоску 1 см ширины. Такой динамометр даёт величину шкалы около 1200 или 1300 мГ с достаточно одинаковыми делениями по 50 Мг.

Работа проводится по тому же методу, что и с весами Жоли.

Наш динамометр мы зажимаем в лапку штатива, вешаем на него скобочку и отмечаем её вес Р1­­. Затем подносим стакан с жидкостью так, чтобы скобочка погрузилась, и начинаем отпускать его до момента образования плёнки. Отмечая новую тягу Р2, мы найдём для поверхностного натяжения  значение:

. (8)

§3. Определение коэффициента поверхностного натяжения методом компенсации давления Лапласа

Молекулы жидкости взаимодействуют между собой силами притяжения и отталкивания, которые проявляются заметно в пределах расстояния r, называемого радиусом молекулярного действия (порядка нескольких диаметров молекулы). Сфера радиуса r называется сферой молекулярного действия. Если молекула находится в поверхностном слое, то есть удалена от поверхности менее чем на r, то равнодействующая сил притяжения со стороны окружающих молекул направлена внутрь жидкости (рис. 19). Поэтому для перехода молекулы из внутренней части жидкости на её поверхность требуется совершить работу, в результате свободная энергия поверхности возрастает. Свободную поверхностную энергию, приходящуюся на единицу поверхности жидкости, называют коэффициентом поверхностного натяжения:

, (1)

где А – работа, которую нужно совершить, чтобы площадь поверхности увеличить на S. В системе СИ коэффициент поверхностного натяжения  измеряется в Дж/м2.

В положении равновесия свободная энергия системы минимальна, поэтому жидкость, предоставленная самой себе, стремится сократить свою поверхность. Мысленно ограничим какой-либо участок поверхностного слоя замкнутым контуром. В нём действуют силы, называемые силами поверхностного натяжения, направленные по касательной к поверхности перпендикулярно к участку контура, на который они действуют. Коэффициент поверхностного натяжения  можно определить и как силу, приходящуюся на единицу длины контура, ограничивающего поверхность:

. (2)

Единица его измерения в системе СИ: 1Н/м=1 Дж/м2.

Коэффициент поверхностного натяжения зависит от химического состава жидкости, среды, с которой она граничит, температуры. С ростом температуры  уменьшается и при критической температуре обращается в нуль.

В зависимости от силы взаимодействия молекул жидкости с частицами твёрдого тела, соприкасающегося с ней, возможно смачивание ил несмачивание жидкостью твёрдого тела. В обоих случаях поверхность жидкости вблизи границы с твёрдым телом искривляется. Такого рода кривую поверхность называют мениском.

Для характеристики мениска вводят краевой угол  (рис 20) между поверхностью стенки и мениском с вершиной в точке их пересечения. Если 900, то говорят, что жидкость смачивает стенку, если 900 – не смачивает. Появление мениска вызвано тем, что молекулы жидкости, находящиеся вблизи стенки, взаимодействуют с частицами твёрдого тела.

Искривлённая поверхность оказывают на жидкость дополнительное (лапласово) давление, действующее в направлении на центр кривизны поверхности. Рассмотрим сферическую каплю жидкости радиуса r. Её поверхность, стремясь сократиться оказывает на жидкость добавочное давление рл. при уменьшении площади поверхности капли на dS поверхностные силы совершают изометрическую работу А, равную убыли свободной энергии поверхности: А=dS. С другой стороны, А=рлdV, где dV – изменение объёма капли. Учитывая (dV=4r2dr) и S=4r2 (dS=8rdr), получаем 8rdr=4r2pлdr, следовательно:

. (3)

Капиллярами называют трубки, радиус кривизны мениска жидкости в которых сравним с радиусом трубки. В них лапласово давление вызывает поднятие смачивающих и опускание несмачивающих жидкостей. Уровень жидкости в капилляре изменяется на такую величину h, чтобы гидростатическое давление p=gh уравновесило лапласово давление . Поверхность мениска в капилляре можно считать частью сферы (рис. 21), поэтому радиус кривизны мениска r=r0/cos, где r0 – радиус трубки. Получим, что высота поднятия жидкости в капилляре:

. (4)

Измерив высоту h, радиуса капилляра r0r и зная плотность , можно определить коэффициент поверхностного натяжения . Однако точное измерение высоты h затруднено. В данной работе необходимо увеличить давление воздуха в капилляре до тех пор, пока уровни жидкости в капилляре и в сосуде не сравняются. Это произойдёт, когда давление воздуха над жидкостью сравняется с лапласовым. Измерив это давление, можно по формуле (3) вычислить коэффициент  жидкости.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Оборудование: капилляр, пробирка, сильфон, манометр, микроскоп, панель с капилляром, резиновая груша, поролоновые подставки, исследуемые жидкости: вода, раствор поваренной соли, спирт.

Схема экспериментальной установки приведена на рис. 22. Основной её элемент – капилляр 2, опущенный одним концом в пробирку 1 с исследуемой жидкостью, которая его смачивает. Поворачивая трёхходовой кран 3, можно позволить воздуху в капилляре сообщаться либо с атмосферой, либо с сильфоном 4 и открытым водяным манометром 5. Когда давление воздуха в капилляре равно атмосферному, исследуемая жидкость в нём поднимается на некоторую высоту h над поверхностью в пробирке, образуя вогнутый мениск. Создавая при помощи сильфона 4 над мениском избыточное по сравнению с атмосферным давление, измеряемое манометром 5, можно добиться того, что уровни жидкости в капилляре 2 и пробирке 1 сравняются. Тогда лапласово давление и давление воздуха над мениском р=0gH равны, то есть

, (5)

где d – диаметр капилляра, H – разность уровней в коленах манометра, 0 – плотность манометрической жидкости. Величина является постоянной для данной установки, поэтому, вычислив её, можно найти  по формуле

=KH. (6)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее