Z (Магнитные материалы для микроэлектроники)

2016-08-01СтудИзба

Описание файла

Документ из архива "Магнитные материалы для микроэлектроники", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "Z"

Текст из документа "Z"

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ УКРАИНЫ

СУМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра физической электроники

РЕФЕРАТ

по курсу: ''ЭДСС''

на тему: ''Магнитные материалы для микроэлектроники''

Выполнил

студент группы ФЭ-01 Захаров И. В.

СУМЫ - 2003

План

ВВЕДЕНИЕ

МАГНИТНЫЕ МАТЕРИАЛЫ ДЛЯ УСТРОЙСТВ НА ЦМД

МАТЕРИАЛЫ ДЛЯ МАГНИТООПТИЧЕСКИХ УСТРОЙСТВ

ПЛЕНКИ ДЛЯ ТЕРМОМАГНИТНОЙ ЗАПИСИ

ВВЕДЕНИЕ

С прогрессом электронной техники предъявляются новые требования к магнитным материалам. Это обусловлено и миниатюризацией устройств, и необходимостью разработки запоминающих и логических элементов большой емкости и быстродействия при малом весе. Необходимы магнитные материалы, прозрачные в оптическом и ИК-диапазоне, обладающие большой коэрцитивной силой, намагниченностью насыщения, сочетающие в себе магнитные и полупроводниковые свойства. Многие такие материалы можно создать на основе редкоземельных материалов.

МАГНИТНЫЕ МАТЕРИАЛЫ ДЛЯ УСТРОЙСТВ НА ЦМД

Для генерирования цилиндрических магнитных доменов используются тонкие магнитные пленки феррит-гранатов R3Fe5O12 и ортоферритов RFeO3. Первые содержат домены с размерами до 1 мкм, что позволяет получить плотность размещения информации до 107 бит/cм2, вторые обладают рекордно высокими скоростями

передвижения до 104 м/с.

Идея записи на ЦМД состоит в том, что двоичное число можно представить цепочкой ЦМД, где логическая "1" - наличие ЦМД, "О" - отсутствие. Осуществление логических операций с помощью ЦМД-устройств основывается на возможности движения ЦМД в пленке в двух, трех и т.д. направлениях.

В технике обычно используются монокристаллические пленки, выращиваемые на немагнитной подложке, кристаллическую структуру и постоянную решетки подложки подбирают в соответствии с требуемой структурой получаемой пленки.

В последнее время начали использовать аморфные магнитные пленки сплавов переходных металлов с РЗ металлами типа Gd-Go и Gd-Fe, в которых возможно получение ЦМД с диаметром < 1 мкм, что позволяет повысить плотность записи информации до 109 бит/см2. Их отличают также простота изготовления, относительно низкая стоимость. Недостатком таких пленок является их низкая термостабильность.

Все материалы-носители ЦМД характеризуются большой одноосной магнитной анизотропией. Чем больше поле ани­зотропии, тем ближе направление намагниченности ЦМД к норма­ли плоскости пластины и тем меньше отклонение формы стенок ЦМД от цилиндрической., Для одноосных кристаллов напряжен­ность поля анизотропии, необходимая для зарождения изолирован­ного домена, оценивается по формуле

где К, — константа одноосной анизотропии, составляющая в сред­нем для ЦМД-материалов 103—104 Дж/м3; ls - намагниченность насыщения, равная при комнатных температурах в среднем 104А/м.

В ЦМД-материалах Hа=105-М07 А/м. В ряде ЦМД-материалов наблюдаются небольшие отклонения от одноосности, обусловлен­ные орторомбической и кубической симметрией вещества.

Отношение поля анизотропии к намагниченности насыщения определяет фактор качества магнитоодноосного кристалла:

Фактор качества — количественная оценка жесткости ориента­ции магнитного момента домена в направлении нормали к плоско­сти пластины — должен быть существенно больше единицы. На практике требуется иметь значения q не менее 3—5. Верхний пре­дел ограничен требуемым быстродействием устройств (см. ниже).

Для оценки свойств материалов, содержащих ЦМД, введено понятие характеристической длины 10

где —удельная энергия доменной границы, Дж/м2; A'—A/а — обменная константа, примерно равная для ЦМД-материалов 10~10— 10-11 Дж/м.

Характеристическая длина lо имеет размерность длины и связа­на с толщиной h пластины и диаметром D домена. С точки зрения увеличения плотности размещения информации желательно, чтобы диаметр домена был как можно меньше. Минимально достижимый диаметр домена при заданном материале Amin=3,9*lo имеет место для пластин (пленок) толщиной A = 3,3lо. В технических устройст­вах, где используют ЦМД, рекомендуется выбирать h~4*l0, так как при этом способность доменов восстанавливаться после флуктуации наиболее сильно выражена. При h = 4*l0 поле, соответствующее се­редине области устойчивых цилиндрических доменов, H=0,28l3> а диаметр доменов в этом поле D —8l0.

Уменьшение размера ЦМД достигается применением материа­лов с малым lо. Из следует, что увеличение намагниченности материала способствует этому в большей степени, чем снижение А .

Действительно, снижение фактора качества q ухудшает условия статической устойчивости ЦМД. Уменьшение обменной константы А' нецелесообразно, поскольку при этом снижается температурная устойчивость ЦМД. Минимальный размер домена, полученный в настоящее время в аморфных и гексагональных ферромагнетиках, составляет около 0,08 мкм. Температурный диапазон устойчивости ЦМД-структур достаточно широк (—50 + 60° С). Точка Нееля большинства современных ЦМД-материалов лежит в пределах 560—720 К.

Важной характеристикой материалов для ЦМД-устройств яв­ляется коэрцитивная сила Нс, во многом определяющая подвиж­ность доменов. Чем меньше Не, тем выше быстродействие ЦМД-устройства. Скорость перемещения домена также зависит от подвижно­сти доменной границы urp. игр об­ратно пропорциональна фактору качества q. Поэтому материалы, обладающие большими значениями q, не отвечают требованиям вы­сокого быстродействия ЦМД-устройств.

ЦМД могут быть получены во многих магнитных материалах, обладающих сильной одноосной анизотропией.

Ортоферриты RFeO3 — первые материалы, на которых были изу­чены ЦМД. В настоящее время эти материалы в промышленных ЦМД-устройствах практически не применяются, поскольку диаметр ЦМД ортоферритов порядка 80—100 мкм не позволяет обеспечить высокую плотность записи информации. Однако в ряде случаев ор-тоферриты, обладающие высокими магнитооптическими параметра­ми, сохранили свои позиции. Их применяют в виде пластинок, выре­занных определенным образом из монокристалла и доведенных по­средством механической полировки до нужной толщины.

Монокристаллы ортоферритов получают обычными способами (см. § 2.20). Одним из наиболее перспективных считают выращи­вание монокристаллов из расплава с применением бестигельной зонной плавки и радиационного нагрева. Этот метод включает из­готовление исходных для выращивания монокристаллов поликри­сталлических заготовок в виде цилиндрических стержней методами керамической технологии. Процесс кристаллизации осуществляется следующим образом. Из предварительно полученного любым мето­дом монокристалла вырезают вдоль определенного кристаллогра­фического направления затравку, которую закрепляют на керами­ческом или сапфировом держателе. По оси затравки с высокой точ­ностью устанавливают исходный поликристаллический стержень. Камера герметизируется, продувается и подключается к системе давления кислорода. Затравку и питающий стержень приводят во вращение, сближают до минимального расстояния и нагревают по определенному режиму. В месте сближения затравки и стержня образуется расплавленная зона. При медленном (5—10 мм/ч) перемещении стержней относительно зоны па затравке начинается кристаллизация. После окончания процесса выращивания кристалл подвергают отжигу для уменьшения He извлекают из кристаллизационной камеры и отрезают от затравки. Таким образом можно получить монокристаллы в виде цилиндров диаметром до 8 мм и длиной до 80 мм.

Ферриты-гранаты со структурной формулой RзFе5012 содержат домены с диаметром порядка не более нескольких микрометров, что позволяет получить плотность размещения информации 105 бит/см2 и даже выше. Однако подвижность доменных границ этой группы материалов ниже, чем у ортоферрптов, и приблизитель­но равна 0,025 м2/(А-с).

Толщина пластинок из ферри­тов-гранатов должна быть порядка микрометра.

Такие тонкие пластины механической обработкой получить нельзя. Поэтому вместо пластин применяют монокристаллические пленки, изготовляемые эпитаксиальным методом — наращиванием пленки па немагнитной подложке. Кристаллическую структуру и постоянную решетки подложки подбирают в соответствии с требу­емой структурой получаемой пленки.

Изготовление пленок эпитаксиальным методом производят пу­тем химического осаждения металлов, входящих в состав граната, в виде галогенидных паров на монокрпсталлпческую немагнитную подложку либо путем погружения подложки и расплав соответст­вующих оксидов граната.

Способ эпитаксии из газовой фазы обеспечивает получение пле­нок более высокого качества, однако эпитаксия из жидкой фазы не требует сложных установок и более технологична. Промышленное изготовление тонких пленок производят методом изотермической эпитаксии из переохлажденного расплава.

Недостаток эпитаксиальных пленок заключается в сравнительно высокой стоимости изготовления и обработки подложки. Необходи­мая для образования ЦМД одноосная анизотропия возникает в процессе технологии изготовления пленок и обусловлена механи­ческими напряжениями, которые появляются из-за неполного со­ответствия постоянных решетки подложки и эпитаксиального слоя, а также вследствие влияния небольших примесей свинца пли вис­мута, которые попадают в пленку из расплава.

Для подавления твердых ЦМД принимают специ­альные технологические меры, направленные на создание опреде­ленной структуры доменной стенки: ионное внедрение или покрытие поверхности пленки феррита-граната тонкой пленкой пермаллоя. При ионной имплантации вследствие бомбардировки пленки иона­ми с высокой энергией на ее поверхности образуется замыкающий магнитный слой толщиной меньше 1 мкм, намагниченность которо­го вследствие возникающих механических напряжений направле­на перпендикулярно намагниченности ЦМД и лежит в плоскости пленки. На­иболее простым способом подавления твердых ЦМД является отжиг пленок в инертной среде при 1100° С.

Аморфные магнитные пленки сплавов переходных металлов с редкоземельными металлами типа Gd-Co и Gd-Fe являются срав­нительно новыми перспективными доменосодержащими материала­ми с диаметром ЦМД меньше 1 мкм, что позволяет повысить плотность записи информации до 109 бит/см2. Их отличают также простота изготовления, относительно низкая стоимость, поскольку свойства аморфных материалов в отличие от эпитаксиалыных пле­нок слабо зависят от материала и качества подложки.

Магнитоупорядоченные интерметаллическне пленки GdCo3 и GdFe2 обеспечивают существование устойчивых ЦМД при опреде­ленном соотношении между компонентами состава, определенной толщине пленки и соответствующих условиях выращивания. Плен­ки производят чаще всего методом радиочастотного распыления на подложки из стекла пли электролитическим осаждением па под­ложки из меди.

Гексагональные ферриты со структурными формулами характеризуются высокой намагниченно­стью насыщения, высоким фактором качества, но их низкая подвижность ограничивает область применения этих материалов.

МАТЕРИАЛЫ ДЛЯ МАГНИТООПТИЧЕСКИХ УСТРОЙСТВ

    Ряд веществ, в том числе ферромагнетики, обладают магнитной оптической активностью. Наведенная магнитным полем оптическая активность проявляется и двух эффектах - Фарадея и Керра. Эффект Фарадея сводится к повороту плоскости линейной поляризации светового луча, проходящего через магнитооптическую среду. Угол поворота при направлении магнитного поля вдоль луча пропорционален напряженности магнитного поля. Нечто похожее наблюдается и при отражении линейно поляризованного луча света от поверхности ферромагнитного материала в присутствии магнитного поля. Этот эффект именуют эффектом Керра. Прошедший или отраженный свет несет, таким образом, информацию о текущем значении напряженности магнитного поля на поверхности ферромагнитного материала, зафиксированную углом поворота плоскости поляризации луча.

       Модуляцию луча по поляризации следует преобразовать в модуляцию но интенсивности. Эта операция может быть выполнена чисто оптическими средствами. .Для этого достаточно магнитооптический элемент поместить (по лучу) между скрещенными поляризаторами (направления пропускания линейно поляризованного света поляризаторов перпендикулярны). Систему скрещенных поляризаторов принято называть поляризационным микроскопом. Эта система, в принципе, не пропускает свет. Однако, если в такой микроскоп ввести оптически активную среду, то часть света, пропорциональная квадрату синуса угла поворота плоскости поляризации, пройдет через систему. Итак, с помощью эффекта магнитооптической активности удается промодулировать свет по интенсивности приблизительно пропорционально квадрату напряженности магнитного поля. Магнитооптические эффекты применяются при считывании информации с магнитооптических дисков.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее