koleb (Колебания и волны), страница 3

2016-08-01СтудИзба

Описание файла

Документ из архива "Колебания и волны", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "koleb"

Текст 3 страницы из документа "koleb"

Для продольных волн остается в силе определение длинны волны .

Если там можно сказать, что длинна волны равна расстоянию между двумя соседними горбами синусоиды, то здесь она равна расстоянию между серединами двух соседних уплотнений (или разряжений). Скорость распространения продольной находится по той же формуле, что и для поперечной волны. Это, конечно, не значит, что скорость распространения в среде обоих видов волн в теле одинакова. Наоборот, во всякой среде скорость продольных волн больше, чем поперечных волн и, следовательно, при одном и том же периоде длина продольной волны больше чем поперечной.

Говоря «во всякой среде», надо сделать оговорку: во всякой твердой среде. Дело в том, что упругие поперечные волны могут распространяться только в твердых телах, в то время как продольные волны могут распространяться и в жидкостях, и в газах. Таким образом, сравнивать скорость распространения обоих видов волн можно только в твердых телах.

Чем это объясняется?

В поперечной волне происходит сдвиг слоев друг относительно друга. Но упругие силы при сдвиге возникают только в твердых телах. В жидкостях и газах слои свободно скользят друг по другу, без появления противодействующих упругих сил, а раз нет упругих сил, то и образование упругих волн невозможно.

Благодаря этому свойству было определенно, что центр Земли жидкий т.к. он не проводит поперечных волн.

И















Продольная волна



звестным примером продольных волн являются звуковые волны.

Звуковые колебания

Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 20 Гц до 20 кГц и которые способно воспринимать человеческое ухо.

Соответственно этому механическому колебанию с указанными частотами называются звуковыми и акустическими. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.

Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания воздуха звук будет делаться все слабее и слабее и, наконец, совсем прекратится. Передача колебаний от звучащего тела осуществляется через воздух. Отметим, что при своих колебаниях звучащее тело при своих колебаниях попеременно то сжимает воздух, прилегающий к поверхности тела, то, наоборот, создает разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.

Музыкальный тон. Громкость и высота тона

Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном или, коротко, тоном.

Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.

Простейшие наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется

амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. со спадением их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной и вообще со всяким источником звука.

Если мы возьмем несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по

размеру: самый большой камертон дает наиболее низкий звук, самый маленький – наиболее высокий звук. Таким образом, высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.

Акустический резонанс

С явлением резонанса мы уже сталкивались в данном реферате. Напомню, что резонансом называется резкое увеличение амплитуды вынужденных колебаний при приближении частоты вынуждающих колебаний к частоте свободных колебаний.

Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующие опыте.

Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбов воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками.

Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.

Возьмем два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.

Нетрудно объяснить этот результат. Колебания одного камертона действует через воздух с некоторой силой на второй камертон, заставляя его совершать его вынужденные колебания. Так как камертона 1 совершает гармоническое колебания, то и сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы иная то вынужденные колебания будут настолько слабы, что мы их не услышим.

Шумы

Музыкальный звук (ноту) мы слышим тогда, когда колебание периодическое. Например, такого рода звук издает струна рояля. Если одновременно ударить несколько клавиш, т.е. заставить звучать несколько нот, то ощущение музыкального звука сохранится, но отчетливо выступит различие консонирующих (приятных на слух) и диссонирующих (неприятных) нот. Оказывается, что консонируют те ноты, периоды которых находятся отношениях небольших чисел. Например, консонанс получается при отношении периодов 2:3(квинта), при 3:4(кванта), 4:5(большая терция) и т.д. Если же периоды относятся как большие числа, например 19:23, то получается диссонанс – музыкальный, но неприятный звук. Еще дальше мы уйдем от периодичности колебаний, если одновременно ударим по многим клавишам. Звук получится уже шумоподобным.

Для шумов характерна сильная непериодичность формы колебаний: либо это – длительное колебание, но очень сложное по форме (шипение, скрип), либо отдельные выбросы (щелчки, стуки). С этой точки зрения шумам следует отнести и звуки, выражаемые согласными (шипящими, губными и т.д.).

Во всех случаях шумовые колебания состоят из огромного количества гармонических колебаний с разными частотами.

Таким образом, у гармонического колебания спектр состоит из одной-единственной частоты. У периодического колебания спектр состоит из набора частот – основной и кратных ей. У консонирующих созвучий мы имеем спектр, состоящий из нескольких таких наборов частот, причем основные относятся как небольшие целые числа. У диссонирующих созвучий основные частоты уже не находятся в таких простых отношениях. Чем больше в спектре разных частот, тем ближе мы подходим к шуму. Типичные шумы имеют спектры, в которых присутствуют чрезвычайно много частот.

Волны на поверхности жидкости

Описанные прежде волны обусловленные силами упругости, но существуют так же волны, образование которых обусловлено силой тяжести. Волны, распространяющиеся по поверхности жидкости, не являются ни продольными, ни поперечными: движение частиц жидкости здесь более сложное.

Е























сли в какой-либо точки поверхности жидкость опустилась (например, в результате

прикосновения твердым предмет), то под действием силы тяжести жидкость начнет сбегать

вниз, заполняя центральную ямку и образуя вокруг нее кольцевое углубление. На внешнем крае этого углубления все время продолжается сбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннем края кольца частицы всегда «выныривают» наверх, так что образуется кольцевой гребень. Позади него опять получается впадина, и т.д. При опускании вниз частицы жидкости движутся, кроме того, назад, а при подъеме наверх они движутся вперед. Таким образом, каждая частица не просто колеблется в поперечном (вертикальном) или продольном (горизонтальном) направлении, а, как оказывается, описывает окружность.

Следует заметить, что в образования поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения, которая, как и сила тяжести, стремится выровнять поверхность жидкости. При прохождении волны в каждой точки поверхности жидкости происходит деформация этой поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде тем больше, чем больше искривлена поверхность, т.е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (низких частот) на первый план выступает сила поверхностного натяжения. Граница между «длинными» и «короткими» волнами, конечно, не является резкой и зависит от плотности жидкости и соответственного ей поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около 1 см, т.е. для более коротких волн (называемых капиллярными волнами) преобладают силы поверхностного натяжения, а для более длинных - сила тяжести.

Н













есмотря на сложный «продольно-поперечный» характер поверхностных волн, они подчиняются закономерностям, общим для всякого волнового процесса.

Кольцевые

волны


Ударяя концом проволоки по поверхности воды, мы заставим бежать по воде систему кольцевых гребней и впадин, Расстояние между соседними гребнями и впадинами , т.е. длина

волны, связано с периодом ударов Т уже известной формулой .

Е










Прямолинейная

волна


сли ударять ребром линейки, параллельным поверхности воды, то можно создать волну, имеющую форму не концентрических колец, а параллельных друг другу прямолинейных

гребней и впадин. В этом случае перед частью линейки мы имеем одно-единственное направление распространения.

Кольцевые и прямолинейные волны на поверхности дают представление о сферических и плоских волнах в пространстве. Небольшой источник звука, излучающий равномерно во все стороны, создает вокруг себя сферическую волну, в которой сжатия и разрежения воздуха расположены в виде концентрических шаровых слоев.

Скорость распространения волн

В том, что распространение волн происходит не мгновенно, нас убеждают простейшие наблюдения. Постепенно и равномерно расширяются круги на воде и бегут морские волны.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее