REF30-51 (Измерение параметров лазеров)

2016-08-01СтудИзба

Описание файла

Документ из архива "Измерение параметров лазеров", который расположен в категории "". Всё это находится в предмете "технология" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "технология" в общих файлах.

Онлайн просмотр документа "REF30-51"

Текст из документа "REF30-51"

44


Поэтому в заключении данного пункта целесообразно рассмотреть внешне достаточно простой чисто оптический способ измерения длительности пикосекундных импульсов, в котором используется оптическая "развертка" (со скоростью света) при прохождении излучения в нелинейном (по интенсивности) веществе, за счет чего и достигается "визуализация" светового импульса.

Рисунок 1.7. Схема измерения длительности пикосекундных импульсов методом нелинейной (двухфотонной) люминесценции.

"Световая" развертка была предложена в 1967 г. Джордмейном для использования длительности пикосекундных импульсов при распространении двух одинаковых световых пучков навстречу друг другу в растворе нелинейно люминесцирующего красителя. В первом эксперименте (рис. 1.7) "стоячая" волна образовывалась путем отражения основного пучка пикосекундных импульсов (генерируемого лазером на неодимовом стекле) в зеркале кюветы с красителем. Очевидно, что возле зеркала (и далее с шагом l=TC/n, где n — показатель преломления раствора красителя) плотность энергии прямого и отраженного пучка будет максимальна из-за совпадения i-го импульса. Левее (рис.1.7) зеркала на l будут совпадать (i-1)-й импульс в прямой волне и (i+1)-й — в отраженной. При удалении от зеркала на 2l двухфотонная люминесценция красителя будет ярче из-за наложения (i-2) и (i+2) импульсов цуга и т.д. Для приближенной оценки контраста получаемой картины примем, что все пикосекундные импульсы в цуге имеют одинаковую пиковую интенсивность I1=I2=Ii.Тогда яркость фонового свечения двухфотонной люминесценции Вфона пропорциональна Ii2,а максимальная яркость (возле зеркала и в других "пучностях") Вмакс пропорциональна (2Ii)2=4Ii2, т.е. заметно выше; это обеспечивает надежное выделение информации о длительности пикосекундных импульсов и временном интервале Т между ними по микроденситограмме фотоснимка кюветы с возбужденным красителем (рис. 1.8).



Рисунок 1.8. Микроденситограмма (справа) фотографии центральной части симметрично возбуждаемой пикосекундными импульсами кюветы (слева) с красителем.

В действительности как сам эксперимент, так и его теория значительно сложнее приведенной выше элементарной модели. Ввиду ограниченного объема укажем лишь, что обычно кювета с красителем возбуждается симметрично (рис.1.8), а закон распределения яркости свечения определяется (авто)корреляционной функцией интенсивности лазерного пучка, в результате чего для гауссова импульса происходит "уширение" свечения в раз, а контраст снижается до 3,0. Известен метод измерения корреляционной функции интенсивности лазерного пучка за счет нелинейного эффекта генерации второй гармоники, позволяющий избавиться от фоновой засветки и иметь временное разрешение »0,1 пс; однако как его описание, так и, особенно, реализация достаточно сложны.

Измерение пространственного распределения энергии в лазерном пучке

Наиболее полной пространственно-энергетической характеристикой лазерного излучения является диаграмм направленности, то есть угловое распределение энергии или мощности в лазерном пучке. Вблизи излучающей апертуры лазера угловое распределение имеет непостоянную конфигурацию, поэтому в большинстве случаев практический интерес представляет распределение поля излучения в дальней зоне, когда форма распределения перестает зависеть от расстояния и можно говорить о сформировавшейся диаграмме направленности излучения. В качестве приближенной оценки границы дальней зоны принимают расстояние, превышающее d2/l, где d —диаметр излучающей апертуры лазера; l — длина волны излучения.

Ширину диаграммы направленности в дальней зоне количественно характеризуют углом расходимости лазерного излучения, который обычно нормируется при выпуске лазеров из производства.

На практике используют два понятия расходимости. В первом случае имеют в виду плоский или телесный угол Qp или Qs, определяющий ширину диаграммы направленности в дальней зоне по заданному уровню углового распределения энергии или мощности, отнесенного к его максимальному значению. Чаще всего значение уровня принимается равным 0,5 и 1/е2, где е — основание натуральных логарифмов. Приведенное выше определение однозначно характеризует излучение только одномодового лазера, имеющего диаграмму направленности без боковых лепестков, т.е. близкую к гауссовскому распределению. В случае многомодового режима диаграмма излучения имеет многочисленные боковые лепестки, содержащие значительную часть энергии. Поэтому величина расходимости по заданному уровню энергии или мощности, т.е. по существу центрального максимума распределения, не очень показатальна, если неизвестно угловое распределение энергии или мощности в этом угле. В таких случаях более удобной характеристикой является энергетическая расходимость лазерного излучения (QW,P или QW,S), т.е. плоский или телесный угол, внутри которого распространяется заданная доля энергии или мощности излучения.

Лазерное излучение также характеризуют значением диаметра пучка, т.е. диаметра поперечного сечения пучка лазерного излучения, внутри которого проходит заданная доля энергии или мощности.

Для практического определения расходимости используют три основных метода: метод сечений, метод регистрации диаграммы направленности и метод фокального пятна.



Рис.1.9. Принципиальные схемы трех основных методов измерения расходимости лазерного излучения

Наиболее простым является метод двух сечений (рис.1.9.а). Согласно этому методу расходимость (или энергетическая расходимость) пучка излучения определяют путем измерения диаметров пучка d1 и d2 в двух поперечных сечениях дальней зоны, отстоящих одно от другого на расстоянии L, и вычисления искомого угла Q по формуле:

Q=arctg[(d2-d1)2L]»(d2-d1)/2L

Измерения диаметров d1 и d2 производятся одновременно или последовательно по одному и тому же критерию — заданному уровню интенсивности либо заданной доле мощности (энергии). Достоинством метода является его простота, однако для обеспечения необходимой точности измерений требуется достаточно большая (до нескольких метров) база между сечениями, что затрудняет использование данного метода в лабораторных условиях.

Для уменьшения линейных габаритов установки применяют различные зеркальные или призменные системы, называемые оптическими линиями задержки. В качестве примера реализации метода сечений на рис.1.10 показана схема измерителя расходимости непрерывного лазерного излучения в видимом и ближнем ИК диапазонах. Излучение лазера 1, отразившись от вращающегося зеркала 2 (положение а-а), отклоняется на фотоприемник 12 с щелевой диафрагмой 11 и после преобразования в электрический импульс регистрируется системой 13. При повороте зеркала на выходе приемника образуется электрический импульс, длительность которого пропорциональна диаметру поперечного сечения пучка. При дальнейшем повороте зеркала 2 в положение в-в пучок излучения, пройдя многозеркальную отклоняющую систему 3-10, сканирует по щели фотоприемника 11. Длительность импульса на выходе этого фотоприемника пропорциональна диаметру второго поперечного сечения, удаленного от первого сечения на расстояние, вносимое зеркальной системой, удлиняющей ход пучка. В силу расходимости длительность этого импульса больше первоначального. В регистрирующей системе 13 измеряется разность длительностей этих импульсов и определяется значение угловой расходимости в соответствии с соотношением

(1.15)

где V — скорость сканирования пучка по диафрагме; L — длина оптической задержки; — длительность импульсов; d1 и d2 — диаметры первого и второго сечений пучка. На этом принципе работает измеритель расходимости с цифровым отсчетом, способный измерять расходимость от 20" до 3600" в диапазонах длин волн 0,4...1,15 мкм и мощности 0,15...1000 мВт. Погрешность измерения расходимости данным прибором составляет 3%.

Рисунок 1.10. Схема измерителя расходимости пучка непрерывного лазера, в котором использована модификация метода сечений.

Метод регистрации диаграммы направленности позволяет получить наиболее полную информацию о пространственном распределении лазерного излучения (см. Рис. 1.9б). Для измерения диаграммы направленности можно использовать фотоэлемент или ФЭУ, расположенные в дальней зоне, фотокатод которых закрыт диафрагмой с отверстием малого диаметра. Перемещая фотоэлемент по дуге окружности радиусом R, регистрируют угловое распределение интенсивности излучения. Зная диаграмму направленности, можно рассчитать энергетическую и угловую расходимости излучения. Измерение диаграммы направленности является сложной и трудоемкой процедурой, поэтому редко применяется в метрологической практике.

Метод фокального пятна является наиболее распространенным методом измерения расходимости. Для проведения измерений в дальней зоне, т.е. в области дифракции Фраунгофера, требуются, как правило, значительные расстояния от источника излучения. Условия дифракции Фраунгофера можно получить в фокальной плоскости идеальной безаберрационной положительной линзы (рис.1.9в). Для перехода к угловому распределению необходимо линейное распределение в фокальной плоскости разделить на фокусное расстояние линзы, то есть угол расходимости излучения лазера определяют по формуле

Q»a/f ',

где а — радиус пятна на фокальной плоскости. В этом методе для исключения влияния дифракции на краях линзы применяют длиннофокусные линзы с большой апертурой, превышающей примерно в 2 раза диаметр падающего лазерного пучка, а фокусное расстояние линзы должно удовлетворять условию

где l — длина волны лазерного излучения; QW,P — энергетическая расходимость лазерного излучения, установленная в стандартах или ТУ на лазеры конкретных типов. Погрешность измерения данного метода в основном связана с неточностью определения размера пятна и не превышает 27%.

Как в методе фокального пятна, так и в методе сечений суть измерений расходимости сводится к определению диаметра сечения пучка по тому или иному критерию. Для определения диаметра пучка излучения применяют в основном два метода (ГОСТ 26086-84): метод калиброванных диафрагм и метод распределения плотности энергии (мощности) лазерного излучения. В первом случае используются диафрагмы с плавно изменяющимся диаметром или сменные калиброванные диафрагмы. Их устанавливают непосредственно в пучке или в фокальной плоскости линзы. Изменяя диаметр диафрагм, регулируют диаметр пучка, в пределах которого заключена заданная доля энергии (мощности) излучения от полной энергии. В схеме такого измерителя имеются две ветви, в одной из которых и измеряется полная энергия (мощность) пучка. Рассмотренный способ является недостаточно точным, а процесс измерения малооперативным, кроме того, он не дает информации о распределении поля вблизи максимума излучения и не позволяет выявить неоднородности; неоднородности в распределении излучения. Для устранения этого недостатка применяют метод регистрации распределения плотности энергии (мощности) лазерного изучения в поперечном сечении пучка. Для этого в видимой области и ближнем ИК диапазоне спектра используют фотографирование пятна излучения на фотопленку или фотопластинку с последующей обработкой микрофотометрированием и численным интегрированием на ЭВМ. В случае мощных импульсных и непрерывных лазеров применяют нейтральные светофильтры для ослабления излучения. При грубых оценках достаточно мощных лазеров размер пятна определяют по размеру отверстия, прожигаемого пучком лазера в непрозрачной мишени (черная бумага, тонкие металлические пластины и т.п.). Более удобным способом измерения, распределения интенсивности в сфокусированном пятне является автокалибровочный способ (рис.1.11), который основан на разделении лазерного пучка на ряд пространственно подобных м и достаточно удаленных один от другого пучков различной интенсивности с помощью пластины L под установленной под углом к пучку лазера. Толстая пластина L ослабляет и многократно расщепляет лазерный пучок.


Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5166
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее