145897 (Датчики потока), страница 3

2016-08-01СтудИзба

Описание файла

Документ из архива "Датчики потока", который расположен в категории "". Всё это находится в предмете "технология" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "технология" в общих файлах.

Онлайн просмотр документа "145897"

Текст 3 страницы из документа "145897"

Датчик потока, работающий на принципе измерения времени прохождения сигнала - один из простейших ультразвуковых измерителей потока. Он широко используется в промышленности и пригоден также для респираторных измерений и измерений потока крови. На рис. 5 иллюстрируются два возможных способа расположения преобразователей в датчике этого типа. Способ расположения, представленный на рис. 5(а) , имеет очевидное преимущество, заключающееся в возможности закреплять преобразователи на внешней поверхности трубы или кровеносного сосуда, что исключает ограничение потока. На рис. 5(б) показаны преобразователи, изолированные от трубы; они используются для высокотемпературных измерений (например, при газификации каменного угля). В этом случае связь преобразователей со средой осуществляется с помощью буферных стержней или волноводов.

Для конфигурации измерителя потока, показанной на рис. 5(б), эффективная скорость ультразвука в кровеносном сосуде или трубе равна скорости звука с относительно текучей среды плюс компонента, связанная с величиной u - скоростью потока, усредненной вдоль пути распространения ультразвуковой волны. Для ламинированного потока u=1,33 , для турбулентного - u=1,07 , где - скорость, усредненная по площади поперечного сечения трубы или кровеносного сосуда. Разница в значениях u и объясняется тем, что ультразвук распространяется вдоль одной линии, а не охватывает все поперечное сечение потока. Формула для времени прохождения ультразвукового сигнала между преобразователями вверх по течению (+) и вниз по течению (-) имеет вид

, (1.14)

Из этой формулы следует, что время прохождения меньше для случая распространения ультразвуковой волны “вместе с потоком”, т.е. вниз по течению.

В одной из модификаций этого метода используются короткие акустические импульсы, попеременно пересылаемые в направлении потока и против него, для того чтобы получить значение разности Dt между временем прохождения сигнала вверх по течению и временем его прохождения вниз по течению. Величина Dt пропорциональна средней скорости u и равна

. (1.15)

Эту величину можно измерить, используя два преобразователя, расположенные в соответствии с рис. и попеременно выполняющие функции излучателя и приемника, или используя излучатель и приемник на каждой стороне кровеносного сосуда или трубы. Единственным препятствием на пути практической реализации данного метода является малость величины Dt, значения которой лежат в наносекундном диапазоне; поэтому для достижения адекватной стабильности необходимо сложное электронное оборудование.

На рис. 5(б) представлен более простой вариант ультразвукового датчика потока на принципе измерения времени прохождения сигнала, используемой в некоторых промышленных системах. При подстановке в выражение (1.15) =0 получаем Dt=2Du/c. Скорость звука c может изменяться с температурой, и с этим могут быть связаны значительные погрешности измерения Dt, если учесть, что в формулу для Dt входит не c, а c2.

Большинство стандартных датчиков потока, работающих на принципе измерения времени прохождения сигнала, выполнены по схеме, представленной на рис. 5(а). Преимущества таких датчиков (измерителей) потока заключается в следующем: 1) с их помощью можно измерять потоки самых различных жидкостей и газов, поскольку для проведения измерений не требуется наличие в текучей среде частиц, отражающих ультразвук; 2) они позволяют определять направление потока; 3) их показания сравнительно нечувствительны к изменениям вязкости, температуры и плотностей текучей cреды; 4) из всех серийно выпускаемых измерителей потока промышленные устройства этого типа обеспечивают наивысшую точность измерений.

Рассматриваемые датчики потока пригодны для измерения потоков жидкостей во многих промышленных применениях. В группу текучих сред, с которыми могут работать эти датчики, входят вода, молоко, масло, очищенные сточные воды, фармацевтические жидкости, жидкая бумажная масса. Измеритель потока серии 240, выпускаемый фирмой Controlotron Corp., - пример ультразвукового измерителя потока для промышленных применений, закрепляемого на внешней поверхности трубопровода. Это устройство позволяет измерять скорость потока жидкости в диапазоне от 0,3 мм/c до 9,14 м/с с точностью до 1% и может работать с трубой любого диаметра от 2,54 см до 1,52 м независимо от материала трубы и толщины ее стенок. Согласно спецификации, предоставляемой фирмой Controlotron, типичное разрешенияе измерителя серии 240 составляет 1,52 мм/с.

Ультразвуковые измерители потока были опробованы также в качестве пневмотахометров - для измерения мгновенного значения объемного расхода вдыхаемого или выдыхаемого газа. Ультразвуковые пневмотахометры имеют следующие теоретические преимущества: 1) высокое быстродействие; 2) широкий динамический диапазон; 3) отсутствие движущихся частей; 4) пренебрежимо малое влияние на поток; 5) естественную двунаправленность; 6) легкость очистки и стерилизации. В настоящее время ультразвуковые пневмотахометры находятся все еще в стадии разработки. Есть несколько проблем, препятствующих успешному внедрению этих устройств: 1) низкая акустическая эффективность передачи ультразвука через газы; 2) широкий диапазон изменений состава, температуры и влажности газа; 3) неудовлетворительное понимание природы ультразвукового поля и характера его взаимодействия с движущимся газом .

Доплеровские измерители потока непрерывного действия.

На рис. 5,в показано, как могут располагаться преобразователи в доплеровских измерителях потока непрерывного действия. В этих измерителях потока используется известный эффект изменения (понижения) частоты звука, детектируемого движущимся приемником, удаляющимся от неподвижного источника звука (эффект Доплера). Если излучатель и приемник неподвижны, а движется объект (частица в текучей среде), отражающий ультразвуковую волну, то обусловленный эффектом Доплера сдвиг частоты при симметричном расположении преобразователей по отношению к аксиально-симметричному потоку рассчитывается по формуле

, (1.16)

где fd- доплеровский сдвиг частоты; f0- частота излучаемой ультрозвуковой волны; u - скорость объекта (частицы в текучей сркде); c - скорость звука; q - угол между направлением излучения (приема) ультрозвуковой волны и осью трубы или кровеносного сосуда. Если поток не имеет аксиальной симметрии или преобразователи расположены несимметрично, то в формулу (1.16) нужно вводить дополнительный тригонометрический коэффициент.

Самое важное преимущество доплеровского измерителя потока непрерывного действия - возможность измерения кровотока с помощью преобразователей, расположенных на поверхности тела с одной стороны кровеносного сосуда. Измерители потока этого типа могут работать с жидкостями, содержащими включения газов или твердых тел. Можно указать и ряд других преимуществ этих устройств: 1) временные задержки сигнала в них минимальны и определяются главным образом характеристиками фильтров; 2) при измерении кровотока помехи от сигнала электрокардиограммы (ЭКГ) незначительны; 3) такие устройства можно устанавливать в дешевых регуляторах потока.

При использовании доплеровского измерителя потока непрерывного действия для получения сигнала доплеровского сдвига необходимо наличие в текучей среде каких-либо частиц. Сигнал доплеровского сдвига не является одночастотным гармоническим сигналом, что обусловлено рядом причин:

1. Профиль распределения скорости по поперечному сечению потока (профиль потока) неоднороден. Частицы движутся с различными скоростями, генерируя различные по частоте доплеровские сдвиги.

2. Частица отражает ультразвуковую волну в течении короткого промежутка времени.

3. Хаотическое вращение частиц и турбулентность вызывают различные доплеровские сдвиги.

Два других недостатка доплеровского измерителя потока непрерывного действия - практически полное отсутствие информации о профиле потока и невозможность определения направления потока без дополнительной обработки сигнала.

Импульсные доплеровские измерители потока.

Импульсный доплеровский измеритель потока работает в радарном режиме и выдает информацию о профиле потока текучей среды. На рис. 6 иллюстрируется принцип работы этого устройства. Преобразователь возбуждается короткими посылками сигнала несущей частоты от генератора. Этот преобразователь выполняет функции излучателя и приемника; отражаемый сигнал с доплеровским сдвигом принимается с некоторой временной задержкой относительно момента излучения первичного сигнала. Временный интервал между моментами излучения и приема сигнала является непосредственным указателем расстояния до отражающей частицы (дальности). Следовательно, можно получить полную “развертку” отражений сигнала поперек трубы или кровеносного сосуда. Профиль скорости в поперечном сечении кровеносного сосуда получается в результате регистрации доплеровского сдвига сигнала при различных временных задержках. С помощью импульсного доплеровского измерителя потока можно оценить диаметр кровеносного сосуда. Как видно из рис. 6, принимаемые сигналы А и С обусловлены отражениями от ближней и дальней стенок сосуда соответственно. Расстояние между точками, где происходят эти отражения, непосредственно связано через простые геометрические соотношения с диаметром сосуда.

Аналогичный принцип измерения лежит в основе метода ультразвукового сканирования в амплитудном режиме (А-режиме) и метода эхо-кардиографии. Ультразвуковой преобразователь устанавливается напротив участка тела или органа, подлежащего сканированию. Этот преобразователь излучает ультразвуковой сигнал, испытывающий отражение на любой неоднородности ткани вдоль направления сканирования. Задержка между временем излучения и приема сигнала может быть использована для определения места локализации этой неоднородности вдоль определенного пути сканирования.

Длительность излучаемого импульса является важным фактором при использовании импульсного доплеровского измерителя для регистрации кровотока. В идеале это должен быть очень короткий импульс, чтобы получить хорошее разрешение по расстоянию. С другой стороны, для достижения достаточно высокого значения отношения сигнал/шум и хорошего разрешения по скорости длительность этого импульса должна быть достаточно велика. Типичный компромиссный вариант - использование импульсов с частотой повторения 8 МГц и длительностью 1 мкс.

Доплеровским измерительным системам, работающим в импульсном режиме, присуще внутреннее ограничение. Оно выражается в том, что при заданной дальности ограничен диапазон измеряемых скоростей. Это вынуждает использовать импульсы с меньшей частотой повторения fr. Действительно, для устранения неопределенности в определении расстояния (дальности) эхо-сигнал от каждого импульса должен быть проанализирован до момента посылки следующего импульса. Следовательно,

, (1.17)

где Rm - максимальная определяемая при данном измерении дальность. Теорема о дискретизации утверждает необходимость выполнения условия

fr>2fd. (1.18)

Из соотношений (1.17), (1.18) и (1.16) получаем

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее