quant (Архитектура квантовых компьютеров), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Архитектура квантовых компьютеров", который расположен в категории "". Всё это находится в предмете "технология" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "технология" в общих файлах.

Онлайн просмотр документа "quant"

Текст 2 страницы из документа "quant"

В самом начале развития идей о квантовом компьютере физики обнаружили и грозного противника этой машины. Имя этого противника –декогерентизация. Кубиты компьютера нельзя полностью изолировать от внешнего мира: кубиты работают в условиях шумового воздействия внешней среды. Флуктуации напряжений на электродах, шумовые токи, неточности выполнения самих импульсных воздействий на кубиты в ходе вычислительного процесса - все это вносит неконтролируемые ошибки в фазы и амплитуды состояний кубитов в ходе вычислительного процесса. По истечении времени, равном времени декогерентизации квантовых состояний системы кубитов, контролируемый вычислительный процесс прекратится, эволюция квантового компьютера приобретет случайный (диффузионный) характер. Время декогерентизации, как правило, будет меньше времени, необходимого для выполнения сложного алгоритма, состоящего из большого числа (-109) вентилей.

Выход из этой, казавшейся тупиковой, ситуации был найден в применении методов квантовой коррекции ошибок. Методы коррекции ошибок хорошо известны из теории обычных (классических) компьютеров. Смысл их в том, что логические |0> и |1> кодируются большим числом битов; анализ кодовых комбинаций позволяет найти и удалить ошибку. Эти методы удалось разработать в квантовом варианте, где ошибки могут быть фазовыми и амплитудными. Выяснилось, что если вероятность ошибки при выполнении одной элементарной операции ниже некоторого порогового уровня, вычислительный процесс можно длить сколь угодно долго. Это означает, что операции квантовой коррекции ошибок удаляют из компьютера больше ошибок, чем вносят. Этот вывод очень важен: по существу, он имеет силу теоремы существования полномасштабного квантового компьютера.

ГЛАВА 3: Архитектура квантовых компьютеров

3.1 Принципиальная схема квантового компьютера



Квантовые методы выполнения вычислительных операций, а также передачи и обработки информации, уже начинают воплощаться в реально функционирующих экспериментальных устройствах, что стимулирует усилия по реализации квантовых компьютеров. Квантовый компьютер состоит из n кубитов и позволяет проводить одно- и двухкубитовые операции над любым из них (или любой парой). Эти операции выполняются под воздействием импульсов внешнего поля, управляемого классическим компьютером.

Принципиальная схема работы любого квантового компьютера может быть представлена следующим образом (рис.4). Основной его частью является квантовый регистр - совокупность некоторого числа L кубитов. До ввода информации в компьютер все кубиты регистра должны быть приведены в основные базисные (булевые) состояния. Эта операция называется подготовкой начального состояния или инициализацией (initializing). Далее каждый кубит подвергается селективному воздействию, например, с помощью импульсов внешнего электромагнитного поля, управляемых классическим компьютером, которое переведет основные базисные состояния определенных кубитов в не основное состояния |0  |1. При этом состояние всего регистра перейдет в суперпозицию базисных состояний вида |n = |n1,n2,n3,...nL, где ni = 0,1.



(
Рис. 4) – схематическая структура квантового компьютера



При вводе информации в квантовый компьютер состояние входного регистра, с помощью соответствующих импульсных воздействий преобразуется в соответствующую когерентную суперпозицию базисных ортогональных состояний. В таком виде информация далее подвергается воздействию квантового процессора, выполняющего последовательность квантовых логических операций, определяемую унитарным преобразованием, действующим на состояние всего регистра. К моменту времени t в результате преобразований исходное квантовое состояние становится новой суперпозицией, которая и определяет результат преобразования информации на выходе компьютера.

Совокупность всех возможных операций на входе данного компьютера, формирующих исходные состояния, а также осуществляющих унитарные локальные преобразования, соответствующие алгоритму вычисления, способы подавления потери когерентности - так называемой декогерентизации (decoherence) квантовых состояний и исправления случайных ошибок, играют здесь ту же роль, что и "программное обеспечение" (software) в классическом компьютере.



3.2 Общие требования к элементной базе квантового компьютера

При выборе конкретной схемы любого квантового компьютера необходимо решить три вопроса: во-первых, выбрать физическую систему, представляющую требуемую систему кубитов, во вторых, определить физический механизм, определяющий взаимодействие между кубитами, необходимое для выполнения двухкубитовых операций, в третьих, определить способы селективного управления кубитами и измерения их состояния на выходе. Все это вместе взятое аналогично "аппаратному обеспечению" (hardware) классического компьютера.

Считается, что для реализации полномасштабного квантового компьютера, превосходящего по производительности любой классический компьютер, на каких бы физических принципах он не работал, следует обеспечить выполнение следующих пяти основных требований:

  1. Физическая система, представляющая полномасштабный квантовый компьютер, должна содержать достаточно большое число L > 103 хорошо различаемых кубитов для выполнения соответствующих квантовых операций.

  2. Необходимо обеспечить условия для приготовления входного регистра в исходном основном базисном состоянии |01,02,03,...0L, то есть возможность процесса инициализации.

  3. Необходимо обеспечить максимальное подавление эффектов декогерентизации квантовых состояний, обусловленное взаимодействием системы кубитов с окружающей средой, что приводит к разрушению суперпозиций квантовых состояний и может сделать невозможной выполнение квантовых алгоритмов. Время декогерентизации должно, по крайней мере, в 104 раз превышать время выполнения основных квантовых операций (времени такта). Для этого система кубитов должна быть достаточно слабо связана с окружением.

  4. Необходимо обеспечить за время такта выполнение требуемой совокупности квантовых логических операций, определяющей унитарное преобразование. Эта совокупность должна содержать определенный набор только двухкубитовых операций, типа контролируемый инвертор или контролируемое НЕ (Controlled NOT  CNOT) (аналог исключающего ИЛИ в классических компьютерах), осуществляющих операции поворота вектора состояния двух взаимодействующих кубитов в четырехмерном гильбертовом пространстве, и однокубитовых операций, осуществляющих поворот вектора состояния кубита в двухмерном гильбертовом пространстве, таких как операции НЕ, Адамара и некоторые другие.

  5. Необходимо обеспечить с достаточно высокой надежностью измерение состояния квантовой системы на выходе. Проблема измерения конечного квантового состояния является одной из основных проблем квантовых вычислений.



3.3 Основные направления в развитии элементной базы квантовых компьютеров



3.3.1 Квантовые компьютере на основе ионов, захваченных ионными ловушками

Взаимодействие между заряженными ионами в одномерной цепочке этих ловушек осуществляется посредством возбуждения их коллективного движения, а индивидуальное управление ими с помощью лазеров инфракрасного диапазона. Первый прототип квантового компьютера на этих принципах был предложен австрийскими физиками И.Цираком и П.Цоллером в 1995 году. В настоящее время интенсивные экспериментальные работы ведутся в Los Alamos Natl.Lab. (LANL) и Natl.Inst.Stand.Tech. (NIST) в США. Преимущество такого подхода состоит в сравнительно простом индивидуальном управлении отдельными кубитами. Основными недостатками этого типа квантовых компьютеров являются необходимость создания сверхнизких температур, обеспечение устойчивости состояний ионов в цепочке и ограниченность возможного числа кубитов значением L < 40.



3.3.2 Квантовые компьютеры на основе молекул органических жидкостей с косвенным скалярным взаимодействием между ними и методов ядерного магнитного резонанса (ЯМР) для управления кубитами:

В предложенном способе построения квантового компьютера кубитами выступают спины - ядер водорода (протоны) и углерода 13С в молекулах жидкости. Так, в молекуле трихлорэтилена (рис. 5) спины ядер двух атомов 13С и одного протона образуют три кубита. Два атома 13С химически неэквивалентны и поэтому имеют различные частоты ядерного магнитного резонанса A и B в заданном внешнем постоянном магнитном поле B0, протон будет иметь третью резонансную частоту C. Подавая импульсы внешнего переменного магнитного поля на частотах (ид, tog, о)с, мы селективно управляем квантовой эволюцией любого из этих спинов (выполняем однокубитовые вентили). Между спинами ядер, разделенных одной химической связью 1H-13С и 13С-13С, имеется магнитное контактное взаимодействие, что позволяет построить двухкубитовые вентили.



Рис. 5. – схема ансамблевого ядерно магнитнорезонансного квантового компьютера









Главным преимуществом такого компьютера является то, что огромное число практически независимых молекул-компьютеров жидкости действует, обеспечивая тем самым возможность управления ими с помощью хорошо известных в технике ядерного магнитного резонанса (ЯМР) операций над макроскопическим объемом жидкости. Последовательности радиочастотных импульсов, выполняющие в этом случае роль определенных квантовых логических вентилей, осуществляют глобальные унитарные преобразования состояний соответствующих ядерных спинов для всех молекул-компьютеров. Индивидуальное обращение к отдельным кубитам заменяется одновременным обращением к соответствующим кубитам во всех молекулах большого ансамбля. Компьютер такого рода получил название ансамблевого (bulk-ensemble quantum computer) ЯМР квантового компьютера. Замечательно, что он может в принципе работать при комнатной температуре. Время декогерентизации квантовых состояний ядерных спинов в жидкости достаточно велико. Оно может составлять несколько секунд.

В области ЯМР квантовых компьютеров на органических жидкостях к настоящему времени достигнуты наибольшие успехи. Они связаны в основном с хорошо развитой импульсной техникой ЯМР-спектроскопии, обеспечивающей выполнение различных операций над когерентными суперпозициями состояний ядерных спинов и с возможностью использования для этого стандартных ЯМР-спектрометров, работающих при комнатных температурах.

Экспериментально на ЯМР квантовых компьютерах были осуществлены алгоритм Гровера поиска данных, квантовое фурье-преобразование, квантовая коррекция ошибок, квантовая телепортация, квантовое моделирование и другие операции.

Основными ограничениями для этого направления являются:

  • Смешанный характер исходного состояния кубитов, что требует использования определенных неунитарных операций для приготовления начального состояния.

  • Измеряемый на выходе сигнал экспоненциально убывает с ростом числа кубитов L.

  • Число ядерных спинов-кубитов в отдельной молекуле с достаточно различающимися резонансными частотами L ограничено.

  • Однокубитовые и двукубитовые квантовые операции являются относительно медленными.

Эти ограничения приводят к тому, что ЯМР квантовые компьютеры на молекулах органической жидкости не смогут иметь число кубитов, значительно больше десяти. Их следует рассматривать лишь как прототипы будущих квантовых компьютеров, полезные для отработки принципов квантовых вычислений и проверки квантовых алгоритмов.



3.3.3 Квантовые компьютеры на основе зарядовых состояний куперовских пар:

Данный принцип построения квантовых компьютеров основан на использовании в качестве кубитов зарядовых состояний куперовских пар в квантовых точках, связанных переходами Джозефсона, предложенное Д.В.Авериным в 1998 году.

Первый твердотельный кубит на этих принципах был создан в NEC Fund.Res.Lab. в Японии в 1999 году. Полагают, что перспективность этого направления состоит в возможности создания электронных квантовых устройств высокой степени интеграции на одном кристалле, при этом для управления кубитами не потребуются громоздкие лазерные или ЯМР установки. Однако на пути создания квантовых компьютеров еще остается нерешенными ряд важных проблем и, в частности, проблема устойчивости состояний кубитов и декогерентизация. Поисковые работы квантовым компьютерам на высокотемпературных сверхпроводниках в России ведутся в Институте теоретической физики им. Л.Д.Ландау РАН

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее