ATP (Расчет настроек автоматического регулятора), страница 4

2016-08-01СтудИзба

Описание файла

Документ из архива "Расчет настроек автоматического регулятора", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "ATP"

Текст 4 страницы из документа "ATP"

4.2 Нормированная кривая разгона для внутреннего контура

табл.4.2

1

0,0000

0,0000

30

14,5000

0,7973

2

0,5000

0,0150

31

15,0000

0,8090

3

1,0000

0,0299

32

15,5000

0,8239

4

1,5000

0,0515

33

16,0000

0,8372

5

2,0000

0,0814

34

16,5000

0,8505

6

2,5000

0,1146

35

17,0000

0,8588

7

3,0000

0,1478

36

17,5000

0,8688

8

3,5000

0,1744

37

18,0000

0,8787

9

4,0000

0,2126

38

18,5000

0,8887

10

4,5000

0,2508

39

19,0000

0,8970

11

5,0000

0,2890

40

19,5000

0,9053

12

5,5000

0,3173

41

20,0000

0,9136

13

6,0000

0,3555

42

20,5000

0,9203

14

6,5000

0,3937

43

21,0000

0,9252

15

7,0000

0,4302

44

21,5000

0,9302

16

7,5000

0,4568

45

22,0000

0,9352

17

8,0000

0,4900

46

22,5000

0,9402

18

8,5000

0,5233

47

23,0000

0,9452

19

9,0000

0,5548

48

23,5000

0,9502

20

9,5000

0,5781

49

24,0000

0,9551

21

10,0000

0,6063

50

24,5000

0,9601

22

10,5000

0,6329

51

25,0000

0,9651

23

11,0000

0,6578

52

25,5000

0,9701

24

11,5000

0,6761

53

26,0000

0,9751

25

12,0000

0,6993

54

26,5000

0,9801

26

12,5000

0,7209

55

27,0000

0,9850

27

13,0000

0,7409

56

27,5000

0,9900

28

13,5000

0,7608

57

28,0000

0,9950

29

14,0000

0,7791

58

28,5000

1,0000

4.3 Нормированная кривая разгона по основному каналу

табл. 4.3

1

0,0000

0,0000

30

14,5000

0,7579

2

0,5000

0,0050

31

15,0000

0,7779

3

1,0000

0,0100

32

15,5000

0,7977

4

1,5000

0,0166

33

16,0000

0,8143

5

2,0000

0,0315

34

16,5000

0,8259

6

2,5000

0,0498

35

17,0000

0,8408

7

3,0000

0,0713

36

17,5000

0,8541

8

3,5000

0,0896

37

18,0000

0,8673

9

4,0000

0,1177

38

18,5000

0,8756

10

4,5000

0,1493

39

19,0000

0,8872

11

5,0000

0,1824

40

19,5000

0,8988

12

5,5000

0,2189

41

20,0000

0,9088

13

6,0000

0,2554

42

20,5000

0,9154

14

6,5000

0,2919

43

21,0000

0,9221

15

7,0000

0,3201

44

21,5000

0,9287

16

7,5000

0,3566

45

22,0000

0,9353

17

8,0000

0,3947

46

22,5000

0,9420

18

8,5000

0,4312

47

23,0000

0,9486

19

9,0000

0,4594

48

23,5000

0,9552

20

9,5000

0,4942

49

24,0000

0,9602

21

10,0000

0,5290

50

24,5000

0,9652

22

10,5000

0,5622

51

25,5000

0,9701

23

11,0000

0,5857

52

25,5000

0,9751

24

11,5000

0,6153

53

26,0000

0,9801

25

12,0000

0,6434

54

26,5000

0,9851

26

12,5000

0,6716

55

27,0000

0,9900

27

13,0000

0,6899

56

27,5000

0,9950

28

13,5000

0,7131

57

28,0000

1,0000

29

14,0000

0,7347

5. Аппроксимация методом Симою.

С помощью программы ASR в пункту аппроксимации последовательно считаем площади каждой из кривой разгона для последующего получения уравнения передаточной функции.

Для кривой разгона по внешнему контуру для объекта второго порядка получаем следующие данные:

Значения площадей:

F1= 6.5614

F2= 11.4658

F3= -4.5969

F4= -1.1636

F5= 44.0285

F6= -120.0300

Ограничимся второй площадью. F1

a1 = F1 + b1

a2 = F2 + b2 + b1 F2

a3 = F3 + b3 + b2 F1 + b1 F2

a1 = 6.5614 + b1

a2 = 11.4658 + b1 6.5614

0 = - 4.5969 + b1 11.4658

Решив систему получаем : b1 = 0.4

a1 = 6.9614

a2 = 14.0904

Тогда передаточная функция объекта второго порядка по внешнему контуру имеет вид:

0.4 s

W(s)=-----------------------------

2

14.0904 s + 6.9614 s + 1

Для кривой разгона по внутреннему контуру для объекта второго порядка получаем следующие данные:

Значения площадей:

F1= 9.5539

F2= 24.2986

F3= -16.7348

F4= -14.7318

F5= 329.7583

F6= -1179.3989

Для определения передаточной функции решаем систему, так как F3<0.

a1 = 9.5539 + b1

a2 = 24.2986 + 9.5539 b2

0 = -16.7348 + b1 24.2986

Решив систему получаем : b1 = 0.6887

a1 = 10.2426

a2 = 30.8783

Тогда передаточная функция объекта второго порядка по внутреннему контуру имеет вид:

0.6887 s + 1

W(s) = -----------------------------

2

30.8783s + 10.2426 s + 1

Для кривой разгона по заданию для объкта третьего порядка с запаздыванием получаем следующие данные:

Значения площадей:

F1= 10.6679

F2= 38.1160

F3= 30.4228

F4= -46.5445

F5= 168.8606

F6= -33.3020

Так как F3

1

W(s) =-------------------------------

2

38.1160 s + 10.6679 s + 1

6. Проверка аппроксимации методом Рунге - Кутта.

В программе ASR в пункте передаточная функция задаем полученные передаточные функции. И затем строим графики экспериментальной и аналитической кривых разгона (по полученной передаточной функции).

6.1 Для кривой разгона по внешнему контуру

Устанавливаем для проверки методом Рунге-Кутта конечное время 27c, шаг 0,5с.

6.2 Для кривой разгона по внутреннему контуру

Устанавливаем конечное время 39с, шаг 0,5с.

6.3 Для кривой разгона по основному каналу

При задании передаточной функции учитываем чистое запаздывание 0,08с.

Устанавливаем конечное время 32с, шаг изменения 0,5с.

Получили, что кривые разгона практически одинаковы, следовательно аппроксимация методом Симою сделана верно.

6.4 Сравнение экспериментальных и исходных передаточных функции:


объект исходная экспериментальная

передаточная передаточная

функция функция


второго порядка 1 0.6887 s

по возмущению W(s)= ------------------ W(s)= -----------------------------

2 2

36 s + 12 s + 1 30,8783 s + 10.2426 s + 1


второго порядка 1 0.4 s

по заданию W(s)= ------------------------------ W(s)= -------------------------------

2 2

16,1604 s + 8,04 s + 1 14.0904 s + 6.9614 s + 1


третьего порядка 1 1

с запаздыванием W(s)= ------------------------------------- W(s)= -------------------------------

по управлению 3 2 2

91.125 s + 60.75 s + 13.5 s + 1 38.1160 s + 10.6679 s + 1

Анализируя таблицу можно сделать вывод о том, что передаточные функции второго порядка практически одинаковы, а третьего порядка значительно отличаются.

6.5 Сравнение экспериментальных и фактических кривых разгона.

Для исходных передаточных функций с помощью программы ASR, пунктов аппроксимация (создать передаточную функцию и изменить время) получим координаты кривых разгона и сравним их с экспериментальной кривой:

- по внешнему контуру

- по внутреннему контуру

- по основному каналу

Полученные значению передаточных функций не значительно отличают от фактических, что говорит о достаточно не большой погрешности между фактическими и экспериментальными данными.

Расчет одноконтурной АСР методом Роточа.

В программе Linreg задаем параметры объекта. Выбираем в качестве регулятора ПИ- регулятор. И рассчитываем его настройки:

а) для экспериментальной передаточной функции.

В программе Linreg задаем передаточную функцию объекта второго порядка с запаздыванием. Выбираем ПИ-регулятор и определяем его настройки.

Получаем kp = 1.0796

Tu = 8.0434

В программе SIAM пользуясь следующей схемой для одноконтурной системы

Подаем скачек на сумматор, стоящий после запаздывания и получаем график переходного процесса по заданию:

Подаем скачек на сумматор, стоящий перед объектом и получаем график переходного процесса по возмущению:

б) для фактической передаточной функции

В программе Linreg задаем передаточную функцию объекта третьего порядка с запаздыванием. Выбираем ПИ-регулятор и определяем его настройки.

Получаем kp = 0.8743

Tu = 8.3924

В программе SIAM пользуясь схемой для одноконтурной системы получаем

- переходный процесс по заданию:

Расчет каскадной АСР методом Роточа.

а) для экспериментальной передаточной функции.

Первоначально определим настройки внутреннего регулятора для внутреннего контура с передаточной функцией W1(s).

0.4s + 1

W1(s) = --------------------------

2

14.0904s + 6.9614s +1

С помощью программы ASR получим АФХ по передаточной функции и определим значения u(m,w), v(m,w), a(m,w), w.

v(m,w)

u(m,u)

a(m,w)

w

kp

Tu

1,0000

0,0000

0,0000

0,0000

0,0000

0,0000

1,0211

-0,0678

1,0234

0,0100

15,0783

0,0109

1,0360

-0,1398

1,0454

0,0200

7,4774

0,0211

1,0439

-0,2151

1,0659

0,0300

4,9709

0,0307

1,0442

-0,2931

1,0845

0,0400

3,7336

0,0395

1,0361

-0,3728

1,1012

0,0500

3,0067

0,0475

1,0194

-0,4531

1,1156

0,0600

2,5367

0,0547

0,9936

-0,5329

1,1275

0,0700

2,2147

0,0609

0,9587

-0,6108

1,1368

0,0800

1,9877

0,0660

0,9147

-0,6857

1,1431

0,0900

1,1826

0,0701

0,8619

-0,7559

1,1464

0,1000

1,1713

4,4754

0,8008

-0,8203

1,1464

0,1100

1,6386

4,5739

0,7323

-0,8775

1,1429

0,1200

1,1584

0,0749

0,6576

-0,9263

1,1360

0,1300

1,5905

0,0737

0,5778

-0,9658

1,1254

0,1400

1,6169

0,0711

0,4945

-0,9953

1,1114

0,1500

1,6842

0,0668

0,4095

-1,0143

1,0938

0,1600

1,8064

0,0609

0,3243

-1,0229

1,0731

0,1700

2,0137

0,0533

0,2407

-1,0214

1,0493

0,1800

2,3750

0,0438

0,1601

-1,0103

1,0229

0,1900

3,0885

0,0324

0,0840

-0,9906

0,9942

0,2000

5,0095

0,0000

0,0134

-0,9635

0,9635

0,2100

26,1125

0,0034

Так как настройки регулятора не могут быть отрицательными то ограничимся 3 квадрантом. И с помощью программы на BASIC рассчитаем оптимальные настройки для ПИ - регулятора методом Стефани по следующим формулам:

A^2(m,w) m 1

Tu = ------------------------ , kp = ---------- - ----------

w(m^2+1)* v(m,w) v(m,w) u(m,w)

наибольшее отношение kp/Tu и будет оптимальными настройками.

Получили что kp = 1.712763

Tu = 4.47537

В программе SIAM с помощью схемы для одноконтурной системы без запаздывания получаем переходные процессы по заданию и по возмущению:

Сравнивая график кривой разгона по основному каналу и переходный процесс внутреннего контура каскадной системы делаем вывод о том, что за время запаздывания основного контура переходный процесс во внутреннем контуре затухнуть не успевает, следовательно передаточная функция эквивалентного объекта имеет вид:

Wоб(s) * Wp1(s)

Wоб(s) = --------------------------- =

1 + Wоб1(s) * Wp1(s)

1 1

--------------------------------- * (1,7128 + ---------- )

2 4,4754s

38,1160s + 10,6679s + 1

-------------------------------------------------------------- =

0,4s + 1 1

1 + --------------------------- * (1,7128 + ----------)

2 4,4754s

14,0904s + 6,9614s + 1

3 2

107.9987s + 67.4444s + 14.6247s + 1

= ---------------------------------------------------------------------------

5 4 3 2

4116.4785s + 3186.9547s + 969.316s + 138.1861s + 15.7294s + 1

Определяем настройки ведущего регулятора. Для ПИ-регулятора получаем:

kp = 0.1249

Tu = 5.4148

В программе SIAM с помощью схемы каскадной системы получаем переходный процесс по заданию:

С помощью схемы каскадной системы получаем переходный процесс по возмущению:

б) для реальной передаточной функции.

Определим настройки внутреннего регулятора для объекта второго порядка с передаточной функцией

1

W1(s) =-------------------------

2

16,1604s + 8.04s + 1

Получаем следующие настройки регулятора: kp = 4.3959

Tu = 6.5957

В программе SIAM пользуясь схемой одноконтурной системы без запаздывания получаем графики переходных процессов по заданию и по возмущению:

Сравнивая график кривой разгона по основному каналу и переходный процесс внутреннего контура каскадной системы делаем вывод о том, что за время запаздывания основного контура переходный процесс во внутреннем контуре затухнуть не успевает, следовательно передаточная функция эквивалентного объекта имеет вид:

Wоб(s) * Wp1(s)

Wоб(s) = --------------------------- =

1 + Wоб1(s) * Wp1(s)

1 1

--------------------------------- * (4.3959 + ---------- )

3 2 6.5957s

91.125s + 60.75s + 13.5s + 1

-------------------------------------------------------------- =

1 1

1 + ------------------------ * (4.3959 + ----------)

2 6.5957s

16.1604s + 8.04s + 1

3 2

468.5449s + 249.2673s + 37.0334s + 1

= --------------------------------------------------------------------------------------------

6 5 4 3 2

42696.154s + 49705.969s + 25770.6474s + 7229.3112s + 1076.6779s+71.4868s+ 1

Определяем настройки ведущего регулятора. Для ПИ-регулятора получаем:

kp = 1.2822

Tu = 6.3952

В программе SIAM с помощью схем для каскадной системы получим переходные процессы по заданию и по возмущению:

Расчет комбинированной АСР.

а) для эксперементальной передаточной функции

Расчет компенсирующего устройства

В программе SIAM с помощью смоделированной схемы комбинированной системы без компенсатора получим соответствующий переходный процесс:

Определим передаточную функцию фильтра для структурной схемы где выход компенсатора поступает на вход регулятора по формуле:

Wов(s)

Wф(s) = --------------------- ,

Wоб(s) * Wр(s)

где Wов(s) - передаточная функция канала по возмущению,

Wоб(s) - передаточная функция объекта,

Wp(s) - передаточная функция регулятора

0,6887s + 1

-----------------------------

2

30.8783 s + 10.2426 s + 1

Wф(s) = ---------------------------------------------------------- =

1 1

------------------------------- * (1.0796 + ---------- )

2 8.0434 s

38.8783 s + 10.6679 s + 1

4 3 2

232.5099 s + 40.1406 s + 98.6173 s + 8.6837 s

= -----------------------------------------------------------

3 2

268.1379 s + 119.8220 s + 18.9263 s + 1

Настроечные параметры компенсирующего устройства будут оптимальными, если АФХ фильтра равны нулю при нулевой и резонансной частоте.

б) для реальной передаточной функции

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее