135441 (Навигационные комплексы Гланасс и Новстар), страница 5

2016-08-01СтудИзба

Описание файла

Документ из архива "Навигационные комплексы Гланасс и Новстар", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "135441"

Текст 5 страницы из документа "135441"

Если цикл взаимных измерений достаточно короткий, то и

Вычитая ji из ij, получаем:

(1.14)

Таким образом каждый НИСЗ после выполнения аналогичных операций определяет уход собственной шкалы относительно шкалы другого НИСЗ. Взаимные измерения могут проводиться либо всеми НИСЗ по одному «ведущему» спутнику, либо между всеми спутниками созвездия взаимно. В первом случае все НИСЗ определяют уход собственной шкалы относительно ШВ «ведущего» КА, и тогда эта ШВ может быть принята за системную, во втором - каждый НИСЗ определяет уход своей шкалы путем усреднения результатов, полученных по взаимным измерениям до всех остальных спутников созвездия, и на этой основе корректирует свою ШВ, так что разброс ШВ всех НИСЗ оказывается минимальным.

Полученную в результате взаимного обмена информацию можно использовать и для определения расстояний между спутниками

(1.15)

Найденные значения дальностей позволяют уточнить эфемериды НИСЗ. С помощью такого метода эфемеридно-временного обеспечения НИСЗ можно не только увеличить время автономной работы системы, но и повысить точностные характеристики системы.

При таком методе синхронизации временных шкал сети НИСЗ для организации взаимных измерений и обмена результатами измерений необходимо установить на борту НИСЗ соответствующие радиотехнические средства и дополнительно использовать не менее 1% вычислительных ресурсов бортовой ЭВМ. Основным недостатком данного метода является возможность ухудшения точности эфемеридно-временного обеспечения НИСЗ системы при нарушении функционирования одного из НИСЗ.

Сочетание неавтономного и автономного методов синхронизации ШВ позволит устранить недостатки, присущие каждому из них в отдельности.

1.9. СПОСОБЫ УЧЁТА В НАВИГАЦИОННОМ СЕАНСЕ СМЕЩЕНИЙ ВРЕМЕННЫХ ШКАЛ НИСЗ

В СРНС, управляемых с ограниченной территории, коррекция временных шкал путем непосредственного изменения (сведения) фаз генераторов НИСЗ может производиться лишь периодически.В интервалах времени между сведениями БХВ работают автономно, что приводит к снижению точности синхронизации из-за погрешностей сведения и хранения шкал. Погрешности хранения шкал времени определяются главным образом нестабильностью генератора БХВ и релятивистскими эффектами. Точность синхронизации можно повысить алгоритмическим способом путем учета систематических смещений шкал времени. При алгоритмической коррекции на время автономной работы БХВ задается модель ухода его шкалы, параметры модели определяются в пункте сверки и передаются потребителю вместе с эфемеридной информацией.

Нестабильность генератора вносит в измерения погрешности как случайного, так и систематического характера. Вид и размер возмущений определяются физическими принципами построения и конструктивными особенностями генератора. Так, возмущения частоты цезиевого стандарта представляют собой бодай шум; частоты кварцевых и рубидиевых стандартов кроме случайных возмущений имеют и систематические дрейфы. При разработке алгоритма ввода поправок систематические дрейфы могут аппроксимироваться, например, полиномиальными функциями времени; степень полинома определяется интервалом аппроксимации и требуемой точностью представления. Если модель ухода достаточно хорошо описывает реальные процессы, то после учета смещений временной шкалы НИСЗ путем ввода поправок остаточная погрешность синхронизации БХВ определяется двумя факторами: погрешностью знания параметров модели и случайными, непрогнозируемыми возмущениями. Так, математическая модель ухода шкалы БХВ, использующего цезиевый стандарт частоты, может быть представлена на интервале времени менее одних суток в виде

(1.16)

где:

; ;

tr(t), fr(t) - смещение шкалы времени и частоты БХВ;

N0 /2 -спектральная плотность эквивалентного белого шума;

(t) - белый шум с единичной спектральной плотностью.

Поправка на смещение цезиевого БХВ рассчитывается при этом в соответствии с выражением , где ,. Погрешность вычисления поправки оценивается по формуле

(1.17)

где:

a0r(t0), a1r(t0), r – корреляции погрешностей знания коэффициентов a0r, a1r на момент времени t0.

Слагаемое (N0/2)(t-t0) характеризует влияние случайных возмущений частоты генератора на погрешность синхронизации БХВ. Для других типов хранителей модель ухода шкалы времени может представляться полиномом более высокой степени, например второй.

Релятивистские эффекты приводят к дополнительному смещению шкалы БХВ за счет изменения гравитационного потенциала и переменной скорости полета НИСЗ. Смещение, обусловленное этими явлениями, определяется выражением.

(1.18)

где:

k = – 4,443 x 10–10 см–1/2;

е - эксцентриситет;

Е(t) - эксцентрическая аномалия;

аэ - полуось орбиты.

Для упрощения алгоритма П временную поправку tp(t) можно представить, как и поправку на дрейф tr(t), в виде полинома. Это позволяет использовать обобщенную полиномиальную модель ухода шкалы времени, учитывающую как дрейф tr(t) БХВ, так и релятивистское смещение.

Для орбит с эксцентриситетом менее 0,3 уравнение аппроксимируется выражением

(1.19)

где: a0p = 6,869 x 10–8 sin E(t0), a1p = 1,002 x 10–10 cos E(t0),

a2p = – 7,307 x 10–16 sin E(t0).

Ограничившись полиномом 2-й степени, можно вычислить поправку tp(t) с погрешностью не более 1 нc на интервале времени 0,65 ч.

Рассмотренный способ учета смещения шкалы БХВ НИСЗ используется в сетевой СРНС «Навстар», где модель ухода шкалы времени НИСЗ описывается полиномом 2-й степени с помощью трех коэффициентов a0, а1, а2 и времени t0, на которое вычислены коэффициенты.

Скорректированное значение времени t = tS – t, где t = a0 + a1(tS – t0) +
a
2(tS – t0)2, tS -время, передаваемое НИСЗ.

Для (t – t0) 1ч такая аппроксимация обеспечивает коррекцию смещения шкалы времени из-за нестабильности БХВ и релятивистских эффектов с погрешностью не более 1 нc.

Параметры ухода шкалы БХВ передаются на спутник ежесуточно в виде 24 комплектов данных, каждый комплект используется для учёта смещений на интервале времени 1 ч.

1.10. СТРУКТУРНАЯ СХЕМА ТИПОВОЙ АП ССРНС

1.10.1. Состав АП потребителя

Аппаратура потребителей (АП) предназначена для определения пространственных координат и параметров движения объекта навигации по результатам измерений при использовании информации, содержащейся в кадре принимаемых от НИСЗ радиосигналов. При этом под параметрами движения понимаются три составляющие вектора скорости в частном случае составляющие вектора ускорения, а также производные от них параметры, нужные для управления движением объектов. С учетом специфики функционирования спутниковых радионавигационных систем к определяемым АП параметрам относят также поправки к шкалам времени и частоты местного собственного хранителя времени и опорного генератора.

Для решения своей основной задачи АП принимает излучаемые каждым НИСЗ радиосигналы, производит синхронизацию по всем компонентам модуляции радиосигналов, измеряет радионавигационные параметры этих радиосигналов, выделяет навигационное сообщение от каждого из НИСЗ и обрабатывает полученную информацию, преобразуя ее в оценки координат и параметров движения. Весь этот процесс называют навигационно-временным определением (НВО).

Для гражданской АП (морских, воздушных, наземных и космических) НВО предназначено для безопасного и наивыгоднейшего вождения объектов, а для военной АП - для обеспечения выполнения боевых задач.

Следует отметить, что высокая точность НВО, обеспечиваемая сетевыми СРНС, значительно расширила круг потенциальных потребителей спутниковых навигационных систем. Аппаратуру потребителей начинают широко использовать для точной топогеодезической привязки объектов, для синхронизации шкал времени (ШВ) хранителей времени, для сверки частоты опорных генераторов и эталонов частоты и для решения иных задач.

В состав обобщенной структурной схемы АП входит антенна, СВЧ усилитель и преобразователь радиосигналов, аналого-цифровой процессор первичной обработки принимаемых сигналов (с блоками поиска, слежения, навигационных измерений и выделения навигационных сообщений), навигационный процессор, интерфейс или блок обмена информацией, опорный генератор (ОГ) и синтезатор частот, источник питания, пульт управления и индикации, блок управления антенной. Штриховыми линиями выделены блоки, наличие (которых в составе АП не является безусловным, а определяется спецификой ее применения. Так как АП может быть полностью автоматизирована и не нуждается в пульте управления, то наличие пульта управления и индикации относится к тем случаям, когда потребителем выходной информации является непосредственно оператор, как, например, а ранцевом варианте АП. Блок управления антенной используется в тех комплектациях АП, в которых антенна для удовлетворения высоким требованиям помехоустойчивости обладает пространственной селекцией и требует управления. Этот блок позволяет управлять диаграммой направленности антенны, формируя, например, «провалы» диаграммы в направлении на источники помех.

1.10.2. Задачи решаемые блоками АП

Рассмотрим кратко основные задачи, решаемые функциональными блоками АП.

Антенна улавливает электромагнитные колебания, излучаемые НИСЗ, и направляет их на вход СВЧ усилителя и преобразователя. В зависимости от структуры ССРНС, частотного диапазона, назначения АП и вида потребителя, на котором она устанавливается, могут применяться антенны с различными диаграммами направленности - от слабонаправленной с неизменяемой (или изменяемой) конфигурацией направленности до узконаправленной с шириной лучей в единицы градусов и изменяемым в пространстве направлением. Если использование фазированных антенных решеток (ФАР) для слабонаправленных антенн с изменяемой конфигурацией диаграммы направленности в настоящее время до- ведено до опытных образцов в АП системы «Навстар», то применение ФАР для антенн с узкими управляемыми лучами встретило ряд технических трудностей, которые в настоящее время еще не преодолены.

Поскольку в ССРНС «Глонасс» и «Навстар» используются так называемые «энергетически скрытые» сигналы (т. е. сигналы с очень малым уровнем мощности излучения), радиочастотные усилители АП должны обладать очень высокой чувствительностью. Достаточно сказать, что шумовая температура современных входных радио усилителей АП диапазона 1,6 ГГц приближается к 300 К. Как правило, радиочастотный преобразователь АП имеет две-три ступени преобразования частоты с усилением до 120...140 дБ, причем в большинстве типов АП независимо от числа ее каналов первый преобразователь частоты всегда один. Число преобразователей второй и третьей ступени зависит от числа каналов АП и ее конкретного схемотехнического решения.

Аналого-цифровой процессор первичной обработки решает задачи: поиска фаз (т. е. задержек) манипулирующих псевдослучайных последовательностей (ДСП), слежения за задержкой ПСП; слежения за фазой и частотой несущих принимаемых радиосигналов; выделения навигационных сообщений. Число каналов поиска, слежения и выделения сообщений равно числу каналов АП.

Большие научно-технические достижения в области создания микропроцессоров, БИС памяти и сверхбольших интегральных микросхем на базовых матричных кристаллах позволяют в настоящее время решать эти задачи, широко используя цифровые методы обработки радиосигналов, в специализированных встраиваемых в АП цифровых процессорах.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее