135326 (АНАЛОГОВЫЕ ЭЛЕКТРОННЫЕ ВОЛЬТМЕТРЫ)

2016-08-01СтудИзба

Описание файла

Документ из архива "АНАЛОГОВЫЕ ЭЛЕКТРОННЫЕ ВОЛЬТМЕТРЫ", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "135326"

Текст из документа "135326"

МИНИСТЕРСТВО ОБРАЗОВАНИЯ, КУЛЬТУРЫ И ЗДРАВООХРАНЕНИЯ

РЕСПУБЛИКИ КАЗАХСТАН

ВУЗ АВИЭК

ФАКУЛЬТЕТ ИНФОРМАТИКИ

ДИСЦИПЛИНА: «Стандартизация и измерительные технологии»

КОНТРОЛЬНАЯ РАБОТА: «АНАЛОГОВЫЕ ЭЛЕКТРОННЫЕ ВОЛЬТМЕТРЫ.»

Выполнил:

Ст-т гр. ЗПОС-96-1

Гринев М.В.

Принял:

Доцент, к.т.н.

Нурманов М.Ш.

Алматы 2000 г.

ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ ЭЛЕКТРОННЫМИ АНАЛОГОВЫМИ ВОЛЬТМЕТРАМИ

Электронные аналоговые вольтметры являются первым приме­ром электронных измерительных приборов, рассматриваемых в курсе. Среди них встречаются как вольтметры прямого преобразо­вания, так и вольтметры сравнения. Рассмотрим принцип работы, структурные схемы и основные функциональные узлы аналоговых вольтметров прямого преобразования и сравнения.

АНАЛОГОВЫЕ ВОЛЬТМЕТРЫ ПРЯМОГО ПРЕОБРАЗОВАНИЯ

Структурная схема электронного аналогового вольтметра пря­мого преобразования соответствует типовой схеме рис. 2.1 и, как видно из рис. 3.13, в самом общем случае включает входное уст­ройство (ВУ), на вход которого подается измеряемое напряжение Ux, ИП и магнитоэлектрический прибор, применяемый в качестве ИУ.

Входное устройство представляет в простейшем случае дели­тель измеряемого напряжения — аттенюатор, с помощью которого расширяются пределы измерения вольтметра. Помимо точного де­ления Ux, ВУ не должно снижать входной импеданс вольтметра, влияющий, как уже неоднократно подчеркивалось, на методическую погрешность измерения Ux- Таким образом, использование ВУ в виде аттенюатора является, в дополнение к добавочным

Р и с. 3.13. Обобщенная структурная схе­ма аналогового вольтметра прямого пре­образования.

сопротивлениям и измерительным трансформаторам напряжения, еще од­ним способом расширения пределов измерения вольтметров. Имен­но этот способ применяется в электронных вольтметрах и других радиоизмерительных приборах.

В качестве ИП в вольтметрах постоянного тока (В2) применя­ется усилитель постоянного тока (УПТ), а в вольтметрах перемен­ного и импульсного тока (ВЗ и В4) —детектор в сочетании с УПТ или усилителем переменного тока. Более сложную структуру имеют преобразователи в вольтметрах остальных видов. В частности, преобразователи селективных вольтметров (В6) должны обеспе­чить, помимо детектирования и усиления сигнала, селекцию его по частоте, а преобразователи фазочувствительных вольтметров (В5) — возможность измерения не только амплитудных, но и фа­зовых параметров исследуемого сигнала.

Структурная схема аналогового вольтметра постоянного тока соответствует обобщенной схеме рис. 3.13. Основным функциональ­ным узлом таких вольтметров является УПТ. Современные вольт­метры постоянного тока разрабатываются в основном как цифро­вые приборы.

Вольтметры переменного и импульсного тока в зависимости от назначения могут проектироваться по одной из двух структур­ных схем (рис. 3.14), различающихся типом ИП. В вольтметрах первой модификации (рис. 3.14, а) измеряемое напряжение Ux^ преобразуется в постоянное напряжение Ux=, которое затем изме­ряется вольтметром постоянного тока. Наоборот, в вольтметрах второй модификации (рис. 3.14, б) измеряемое напряжение сначала усиливается с помощью усилителя переменного тока, а затем де­тектируется и измеряется. При необходимости между детектором и ИУ может быть дополнительно включен УПТ.

Сравнивая структурные схемы рис. 3.14, можно еще до рас­смотрения схемных решений их функциональных узлов сделать определенные выводы в отношении свойств вольтметров обеих мо­дификаций. В частности, вольтметры первой модификации в отно­шении диапазона частот измеряемых напряжений не имеют таких ограничений, как вольтметры второй модификации, где этот параметр зависит от полосы пропускания усилителя переменного тока. Зато вольтметры второй модификации имеют высокую чувствитель­ность. Из курса «Усилительные устройства» известно, что с по­мощью усилителя переменного тока можно получить значительно больший коэффициент усиления, чем с помощью УПТ, т. е. про­ектировать микровольтметры, у которых нижний предел Ux^. огра­ничивается собственными шумами усилителя. За счет изменения

Рис. 3.14. Структурные схемы аналоговых вольтмет­ров переменного и импульсного тока:

а—с детектором на входе; б — с усилителем переменного то­ка на входе.

коэффициента деления ВУ и коэффициента усиления усилителей диапазон измеряемых напряжений может быть большим у вольтмет­ров обеих модификаций.

Тип детектора в структурных схемах рис. 3.14 определяет при­надлежность вольтметров обеих модификаций к вольтметрам амплитудного, среднеквадратического или средневыпрямленного на­пряжения. При этом вольтметры импульсного тока (В4) проекти­руются только как вольтметры первой модификации, чтобы избе­жать искажений формы импульсов в усилителе переменного тока. При измерении напряжения одиночных и редко повторяющихся им­пульсов применяются либо диодно-емкостные расширители им­пульсов в сочетании с детекторами, либо амплитудно-временное преобразование импульсов, характерное для цифровых вольтмет­ров.

Рассмотрим теперь типовую структурную схему селективных вольтметров, которые используются при измерении малых гармо­нических напряжений в условиях действия помех, при исследова­нии спектров периодических сигналов и в целом ряде других слу­чаев. Как видно из рис. 3.15, вольтметр представляет собой по существу супергетеродинный приемник, принцип работы которого поясняется в курсе «Радиотехнические цепи и сигналы».

Частотная селекция входного сигнала осуществляется с помо­щью перестраиваемого гетеродина, смесителя (См) и узкополосного усилителя промежуточной частоты (УПЧ), который обеспечи­вает высокую чувствительность и требуемую избирательность. Если избирательность недостаточна, может быть применено двукратное, а иногда и трехкратное преобразование частоты. Кроме того, в се­лективных вольтметрах обязательно наличие системы автоматиче­ской подстройки частоты и калибратора. Калибратор — образцовый

источник (генератор) переменного напряжения определенного уровня, позволяющий исключить систематические, погрешности из-за изменения напряжения гетеродина при его перестройке, измене­ния коэффициентов передачи узлов вольтметра, влияния внешних факторов и т. д. Калибровка вольтметра производится перед изме­рением при установке переключателя П из положения 1 в положе­ние 2.

Рис. 3.15. Структурная схема селективного вольтметра.

В заключение отметим, что в одном приборе нетрудно совмес­тить функции измерения постоянных и переменных напряжений, а с помощью дополнительных функциональных узлов и соответст­вующих коммутаций (по аналогии с выпрямительными приборами) образовать комбинированные приборы, получившие название уни­версальных вольтметров (В7). Современные типы таких вольтмет­ров, как правило, проектируются в виде цифровых приборов, что позволяет дополнительно расширить их функциональные возмож­ности и повысить точность. В связи с этим особенности построения структурных схем универсальных вольтметров будут рассмотрены в работах коллег.

АНАЛОГОВЫЕ ВОЛЬТМЕТРЫ СРАВНЕНИЯ

Рис. 3.16. Схема измерительного по­тенциометра.

Электронные аналоговые вольтметры сравнения в большин­стве своем реализуют наиболее распространенную модификацию метода сравнения — нулевой метод. Поэтому чаще они называются компенсационными вольтметрами. По сравнению с вольтметрами прямого преобразования это бо­лее сложные, но и, как подчерки­валось ранее более точные при­боры. Кроме того, из схемы рис. 2.2 видно, что в момент ком­пенсации Х=0 и прибор не по­требляет мощности от источни­ка X. Применительно к компенса­ционным вольтметрам это озна­чает возможность измерения не только напряжения, но и ЭДС ма­ломощных источников. В практи­ке электрорадиоизмерений подоб­ные измерения выполняются как с помощью электронных компен­сационных вольтметров, так и электромеханических. Для пояснения применения нулевого метода при измерении ЭДС и напряжения рассмотрим вначале классиче­скую схему электромеханического компенсатора постоянного тока, представленную на рис. 3.16.

Одним из основных функциональных узлов любого компенсатора является высокоточный переменный резистор R, по шкале которого отсчитывают измеря­емое значение ЭДС (Ех) или напряжения (Ux). Поэтому компенсаторы принято называть по ГОСТ 9245—79 измерительными потенциометрами. В качестве об­разцовой меры ЭДС применяется нормальный элемент (НЭ) — электрохимиче­ский источник, ЭДС (Еа) которого известна с очень высокой степенью точности. Однако емкость НЭ невелика, и длительное сравнение в процессе измерений Ex(Ux) с Ен невозможно. Поэтому схема потенциометра дополняется вспомога­тельным источником ЭДС (Еo) большой емкости. Для сравнения с Ex(Ux) ис­пользуется падение напряжения на образцовом резисторе Rн., создаваемое током от источника Eо—рабочим током (Iр), который предварительно устанавлива­ется. Таким образом, процесс измерения Ex{Ux) должен состоять из двух этапов.

На первом этапе устанавливается требуемое значение Iр. Для этого пере­ключатель устанавливается в положение 1 и с помощью потенциометра Rp до­биваются нулевого показания индикатора И (как правило, магнитоэлектрический гальванометр). Как видно из рис. 3.16, этому соответствует IpRн=Eн, т. е. ра­бочий ток Iр, который далее должен оставаться постоянным, будет воспроизво­дить в процессе измерений значение Ен.

На втором этапе измеряют значение Ex(Ux). Для этого переключатель пере­водится в положение 2, и изменением сопротивления потенциометра R вновь до­биваются нулевого показания И. При Iр = const этому соответствует Ex (Ux) = IpR, т. е. искомое значение Ex(U^}^.R и может быть отсчитано по шкале R.

Таким образом, метрологические характеристики измерительных потенцио­метров постоянного тока определяются параметрами НЭ, образцовых резисто­ров, индикатора и источника Еу. В качестве НЭ применяются насыщенные и не­насыщенные обратимые гальванические элементы, положительный электрод которых образуется ртутью, а отрицательный — амальгамой кадмия. Классы точности НЭ регламентируются ГОСТ 1954—82 в пределах 0,0002...0,02 и опре­деляют класс точности потенциометра в целом. Потенциометр R выполняется по специальной схеме, обеспечивающей постоянство /р при изменении R и необхо­димое число знаков (декад) при отсчете Ex(Ux). Этим требованиям удовлет­воряют схемы с замещающими и шунтирующими декадами.

Измерительные потенциометры могут использоваться и для измерения пере­менных напряжений. Однако компенсирующее напряжение необходимо в этом случае регулировать не только по модулю, но и по фазе. Поэтому такие потен­циометры имеют более сложную схему, чем потенциометры постоянного тока, а по точности значительно уступают им из-за отсутствия на переменном токе образцовой меры, аналогичной по своим характеристикам НЭ. В практике электрорадиоизмерений они полностью вытеснены электронными компенсационными вольтметрами.

В компенсационных вольтметрах измеряемое напряжение (по­стоянное, переменное, импульсное) сравнивается с постоянным компенсирующим напряжением, которое в свою очередь точно измеряется вольтметром постоянного тока и является мерой Ux. Типовая структурная схема такого вольтметра приведена на рис. 3.17.

Как видно из рис. 3.17, основу вольтметра составляет компен­сационный ИП, состоящий из измерительного диода V с нагрузкой R, регулируемого источника постоянного компенсирующего напря­жения -Ек, усилителя и индикатора с двумя устойчивыми состояниями. При отсутствии Ux индикатор, реализуемый с помощью

функциональных узлов находится в первом устойчивом состоянии, а при некотором пороговом значении переходит во второе состояние. Процесс измерения Ux как раз и сводится к постепенному увеличению Ек до тех пор, пока индика­тор не перейдет во второе устойчивое состояние. Значение Ек, со­ответствующее моменту перехода, измеряется вольтметром посто­янного тока и является мерой Ux.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее