123345 (Мікроструктура зносостійких чавунів для виготовлення промислових мелючих куль)

2016-08-01СтудИзба

Описание файла

Документ из архива "Мікроструктура зносостійких чавунів для виготовлення промислових мелючих куль", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "123345"

Текст из документа "123345"

Міністерство освіти і науки України

Національний університет "Львівська політехніка"

Кафедра "Технології машинобудування"

Реферат

"Мікроструктура зносостійких чавунів для виготовлення промислових мелючих куль"

Дисципліна: фізика металів

Львів – 2008р

Зміст

Вступ

1. Теоретичні дані. Аналіз експлуатації мелючих куль

2. Характеристика досліджуваних матеріалів

3. Розробка оптимального складу хромистого чавуну, для даного типу робіт

4. Розроблення рекомендованої технології лиття мелючих куль

5. Результати виробництва мелючих куль з чавуну ИЧ280Х15Г4Т, що відливали на модулі ВВЛ за розробленою технологією

Висновки

Література

Вступ

На Україні та у країнах СНД використовувалась та використовується зараз високопродуктивна технологія одержання сталевих куль, що включає поперечно-гвинтову прокатку та подальше гартування з самовідпуском у агрегатах безперевної дії. Головним недоліком такої технології є низька твердість і, відповідно, зносостійкість куль, особливо великого діаметра. В зв’язку з цим, в промислово розвинених країнах до 30% мелючих куль виготовляється з білих чавунів методом лиття. Такі кулі мають стійкість у 3...5 разів вищу, ніж стійкість сталевих куль. На Україні об’єм виробництва чавунних мелючих тіл не перевищує 2% від загального випуску і обмежується цильпебсами (конічні мелючі тіла) та кулями малого діаметру (не більше 60мм). Кулі великих діаметрів виготовляються за кордоном з високолегованих чавунів типу ніхард та з хромистих чавунів. На Україні такі кулі не виготовляють через наявність у їх складі дефіцитних легуючих елементів, а також через відсутність економічних та продуктивних технологій. Необхідність у легуванні чавунів дефіцитними елементами пов’язана з тим, що нелеговані чавуни не задовольняють вимогам по ударостійкості мелючих куль. У зв’язку з цим набуває актуальності проблема оптимізації складу зносостійкого чавуну для мелючих куль з метою зниження його легованості. Технології лиття у піщані та металеві форми, що використовуються теперішнього часу, характеризуються низьким коефіцієнтом використання рідкого металу (біля 45...50%) та наявністю грубих ливарних дефектів кулі, що знижують її ударостійкість та зносостійкість. Тому проблема потребує використання способів лиття, що забезпечують направлену кристалізацію рідкого металу з мінімальним розвитком ливарних дефектів, оптимальну макро- та мікроструктуру і високі коефіцієнт використання рідкого металу та продуктивність праці.

1. Аналіз експлуатації мелючих куль

На основі аналізу літературних даних встановлені фактори, що визначають експлуатаційну стійкість мелючих куль. Такими факторами є твердість, достатня в’язкість та зносостійкість. Крім того, за умовами розвантажувально-завантажувальних робіт кулі повинні мати певні магнітні властивості.

Згідно з літературними даними для куль великих діаметрів (80мм та більше) за кордоном використовують хромисті чавуни та стоп ніхард. Оскільки нікель, що є основним легуючим елементом стопу ніхард, у наших умовах є дорогим та дефіцитним матеріалом, в роботі, як базовий матеріал для литих мелючих куль було вибрано хромистий чавун. Встановлено, що основним фактором, який визначає властивості білого чавуну, є склад, кількість та морфологія карбідної фази. Тому найбільш придатний для роботи в умовах ударно-абразивного зносу вибрані чавуни леговані 12...24% хромом. Кристалізація таких чавунів проходить з утворенням карбідів типу (Cr,Fe)7C3, які служать ведучою фазою структури. Аустенітно-хромистокарбідна евтектіка має скелетну будову, при цьому матричною фазою є аустеніт, а розгалуженою фазою - карбід (зазначемо, що у звичайній ледебуритній евтектиці - навпаки). Такими особливостями будови чавуну деякі дослідники пояснюють високий рівень механічних властивостей чавунів з карбідами типу (Cr,Fe)7C3, у порівнянні з низьколегованими чавунами, що містять ледебурітну евтектику.

Аналіз літературних даних про вплив легуючих елементів на структуру та властивості хромистого чавуну дозволив вибрати основну систему Fe-C-Cr-Mn з таким вмістом елементів, мас. доля, %: 1,8...3,2С; 13,0...23,0Cr та 1,0...4,0Mn для подальших досліджень з метою оптимізації складу стопу по службовим властивостям. У огляді відзначено також позитивний вплив модифікування хромистого чавуну титаном.

Поряд з легуванням та модифікуванням вказані також інші методи керування структурою високохромистих чавунів: дією на метал, що кристалізується, фізичними та механічними факторами, а саме вібрацією, відцентровими силами, електромагнітними полями, електронами високої енергії. Механічною дією можна також досягти щільних якісних відливків, а також підвищення виходу придатного.

Проаналізовано вітчизняний досвід виробництва литих куль. До теперішнього часу на Україні литі кулі діаметром більше 60мм не виробляють.

Виконаний аналіз дозволив сформулювати завдання, які необхідно вирішити для досягнення мети роботи.

2. Характеристика досліджуваних матеріалів

На підставі аналізу попереднього досвіду для досліджень були обрані високохромисті чавуни. Експерименти проводили на литих зразках та литих мелючих кулях діаметром 80...100мм.

Плавки проводили у лабораторних печах місткістю 20 та 60кг. В промислових умовах використовували індукційну піч місткістю 6т. Температура у печі перед випуском металу становила 1450...14800С. Температура чавуну при заливці змінювалась від 1340 до 14200С. Відливку зразків проводили у піщані форми. Для вивчення впливу хімічного складу та термічної обробки на структуру та властивості хромистого чавуну відливали кулі діаметром 100мм у промислові піщані форми по технології, що розроблена ЗДТУ і впроваджена на НВО "Востокмашзавод". Для вивчення впливу вібрації та відцентрових сил, кулі відливали у кокіль на модулі установки відцентрово-вібраційного лиття Камиш-Бурунського залізорудного комбінату.

Термічну обробку зразків проводили у лабораторних печах опору, литих куль - у печах СДО-28 з висувним подом. Термічна обробка включала повітряне гартування від температур 920...9500С з відпуском при температурі 430...4500С. Для запобігання утворення тріщин у відливках при нагріванні під гартування швидкість нагрівання обмежували величиною 700С/год. з витримкою протягом 2 годин при температурі 4000С. Подальше нагрівання вели з швидкістю 1500С/год.

Контроль хімічного складу, дослідження макро- та мікроструктури, розміру структурних складових та механічних властивостей проводили стандартними методами. Для дослідження ударостійкості куль було розроблено спеціальну методику з використанням копра з падаючим вантажем. Енергія одиничного удару дорівнювала 1450Дж, що в 10...15 разів перевищує реальні динамічні навантаження, які сприймають кулі при роботі у промислових млинах. Ударостійкість оцінювали по кількості ударів, що витримувала куля до руйнування.

Дослідження абразивної зносостійкості проводили по методу випробування матеріалів при терті по закріпленому абразиву на установці Фізико-механічного інституту НАН України, яка забезпечувала постійну лінійну швидкість при терті. Ударно-абразивну зносостійкість зразків досліджували у лабораторному кульовому млині.

Об’єм усадочних дефектів визначали за методикою, що розроблена кафедрою М та ТЛВ ЗДТУ. Додатково досліджували площину усадочної раковини на темплеті кулі, що виготовляли розтином кулі по площині, яка перпендикулярна роз’єму форми та проходить через живильник.

Математичну обробку експериментальних даних та оптимізацію хімічного складу чавуну здійснювали із застосуванням сучасних апаратів і засобів обчислюваної математики.

3. Розробка оптимального складу хромистого чавуну, для даного типу робіт

При виборі критеріїв експлуатаційної стійкості куль, необхідних для оптимізації складу стопу, були використані результати випробувань литих мелючих куль з хромистих чавунів різного складу, проведених раніше кафедрою технології металів ЗДТУ. Такими критеріями було обрано:

-твердість поверхні кулі не менше HRC 55 з максимально можливою рівномірностю по перетину кулі;

-ударна в’язкість КС матеріалу кулі не менше 8,0 Дж/см2;

-ударостійкість куль Nу не менше 15 ударів;

-магнітна проникливість не менше 4,0 Гн/м;

-достатня щільність та якість відливків.

Вплив основних легуючих елементів (C, Cr та Mn) вивчали з використанням математичного методу активного планування експерименту 23 (ортогональний план другого порядку). Згідно з аналізом літературних даних вміст хімічних елементів змінювали у наступних межах, мас. доля,%: 1,8...3,2С; 13,0...23,0Cr, 1,0...4,0Mn. Крім того, стопи вміщували 0,8...1,0%Ni, не більше 1,0%Si. Функцією відклику було обрано твердість HRC, ударна в’язкість КС, магнітна проникливість , абразивний та ударно-абразивний зноси, як фактори, що відображають експлуатаційні якості мелючих куль.

Математична обробка результатів експерименту дозволила одержати залежності властивостей зносостійкого чавуну від його хімічного складу (у досліджених межах), що описуються рівняннями регресій:

КС = 55,6-16,25С-2,0Cr-2,1Mn+0,7СMn+2,2С2+0,05Cr2, Дж/см2;

HRC = 27+5,6С+0,3Cr+8,9Mn-1,7Mn2;

= 2,8-1,7С+0,1Cr+2,8Mn-0,1ССr-0,2СMn+0,8С2-0,4Mn2, Гн/м;

IА = 441-53С-1,6Cr-70Mn+13Mn2, г/(м2ч);

IУА = 95,8-38,1С-3,75Cr-3,9Mn+0,6ССr+5,25С2+0,06Сr2+

+0,8Mn2, г/(м2ч);

Стопи вивченого хімічного складу мають структуру доевтектичного білого чавуну. Евтектика представлена хромистим карбідом типу (Cr,Fe)7C3 розеточної будови в аустенітній матриці. Кількість карбідів змінювалась від 15 до 35%. Термічним травленням встановили, що при будь-якому співвідношенню Cr/C у досліджених межах (5...11) при кристалізації стопів створюється тільки карбід тригонального типу (безбарвні карбіди). Карбіди цементитного типу (Fe,Cr)3C (цегельного кольору) виділяються вже у процесі охолодження відливку. Переконливим підтвердженням результатів термічного травлення служать дослідження мікротвердості. Безбарвні карбіди мали мікротвердість Н50=1410...1680МПа, що відповідає карбіду типу (Cr,Fe)7C3. Одержані результати свідчать про недоцільність збільшення вмісту хрому з метою зміни морфологічної будови карбідної фази та евтектики в цілому. Вже при 13,0%Cr усі досліджені сплави кристалізувалися з евтектикою розеточної будови. Вторинні карбіди цементитного типу виділяються у середині металічної основи стопу, мають невеликі розміри і на первинну структуру високохромистих чавунів впливу не чинять. Металева основа досліджених чавунів після термічної обробки має структуру мартенситу з мікротвердістю Н50=710...830МПа. Невеликі розміри вивчених зразків (біля 30мм) не дозволили встановити різниці у структурі по перетину шліфа.

Зміни ступеня легування чавунів не привело до помітної зміни металевої матриці стопів, але значно змінило кількість карбідної фази. Цей факт пояснює зниження ударної в’язкості та підвищення твердості із збільшенням вмісту вуглецю та хрому як основних карбідостворюючих елементів. Вплив марганцю за умов невеликих зразків встановити складно. Власних карбідів марганець не утворює (в досліджених стопах), а лише легує карбіди хрому та металеву основу. Розчинюючись у залізі, марганець розширює -область, та збільшує кількість вуглецю в аустеніті, тим самим стабілізує аустеніт в області перлітного перетворення та підвищує здатність до гартування, а також зменшує загальну кількість карбідів.

Встановити зв’язок між співвідношенням Cr/C та ударно-абразивною зносостійкістю не вдалося. Але оптимальною структурою незалежно від вмісту вуглецю та хрому є мартенситна матриця з 25...28% карбіду типу М7С3. Певно, така структура оптимально поєднує твердість як фактор, що перешкоджає проникненню абразивної частки у тіло кулі, та достатню в’язкість як показник, що сприяє зниженню викришування карбідів у процесі зносу, та підвищенню ударостійкості куль.

Одержані залежності дозволили провести з врахуванням вимог до матеріалу мелючих куль комплексну оптимізацію хімічного складу зносостійкого чавуну з використанням графо-аналітичного методу. Визначено базовий склад чавуну, мас. доля, %: 2,7...2,9С; 13,0...15,0Cr; 4,0%Mn. Такий склад чавуну забезпечує необхідний рівень властивостей при мінімально можливому вмісті хрому. Цей чавун також має ступінь евтектичності 0,8, що забезпечує покращення ливарних властивостей.

Вивчення впливу марганцю, нікелю, кремнію та титану на експлуатаційні властивості стопу ИЧ280Х15 проводили безпосередньо на кулях діаметром 100мм, що відливали у піщані форми.

Марганець вводили до стопу з метою забезпечення високої твердості не тільки на поверхні кулі, але й по всьому її перетину. При всіх вивчених вмістах марганцю стоп задовольняє умовам по ударостійкості. Твердість поверхні куль при вмісті від 1,0 до 4,0%Mn практично не змінюється, але у центрі кулі максимальне значення твердості має місце при 3,6...4,1%Mn. При такому вмісті марганцю металева основа як на поверхні, так і у центрі кулі представлена мартенситом. Вміст марганцю вище 4,1% знижує точку мартенситного перетворення настільки, що робить практично неможливим одержання структур гартування при кімнатній температурі. Кількість немагнітної складової структури - аустеніту збільшується до межі, коли кулі перестають задовольняти встановленим вимогам по магнітній проникливості, а також по твердості. Вміст марганцю нижче 3,3% приводить до збільшення кількості продуктів розпаду аустеніту у центральній частині кулі, що негативно відзначається на твердості та стійкості мелючих куль.

Кремній є розкислюючим та легуючим елементом і вноситься у чавун з шихтовими матеріалами. Кремній звужує -область та значно знижує концентрацію вуглецю у аустеніті. У хромомарганцевих чавунах з високою стабільністю аустеніту кремній у визначеному діапазоні вмісту можна розглядати як корисний елемент, що підвищує температуру мартенситного перетворення та полегшує тим самим утворення мартенситу. Але підвищений вміст кремнію приводить до зниження твердості чавуну, оскільки ефект від збільшеня кількості продуктів перлітного розпаду з малою твердістю перекриває ефект від збільшення кількості мартенситу. Встановлено, що вміст кремнію у чавуні ИЧ280Х15Г4 не повинен перевищувати 1,0%.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее