123220 (Использование композиционных пластмасс в народном хозяйстве)

2016-08-01СтудИзба

Описание файла

Документ из архива "Использование композиционных пластмасс в народном хозяйстве", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "123220"

Текст из документа "123220"

Использование композиционных пластмасс в народном хозяйстве

Полимеры очень редко используют в чистом виде. Почти все они содержат хотя бы один-два процента различных стабилизаторов, красителей, пластификаторов и других добавок. В таком виде эксплуатируются наиболее распространенные синтетические полимеры — термопласты, например полиэтилен, полистирол, поливинилхлорид.

Современная техника предъявляет самые разнообразные требования к полимерным материалам. Допустим, нужно повысить прочность и жесткость полимера, снизить его стоимость, уменьшить плотность. С каждой из этих задач успешно справляются добавлением в полимер различных наполнителей. Каких именно? Это зависит от конкретных запросов потребителей материала. Например, прочность повышают введением в полимер упругих высокопрочных волокон, а снижения стоимости добиваются, наполняя полимер такими дешевыми продуктами, как речной песок, опилки, цементная пыль. Наполнители необязательно должны быть твердыми. Можно наполнить полимеры газом, тогда мы получим газонаполненные полимеры — пенопласты. Так решается задача резкого снижения плотности полимерных материалов. Много сложнее наполнить полимеры жидкостью, чтобы она была равномерно распределена в виде дисперсных капель, но в литературе можно найти описание методов получения и таких материалов. Материалы, содержащие две или более фазы, именуются композиционными, или просто композитами. Напомним, что латинское compositio означает составление, сочинение. Если одна из составляющих фаз — полимер, а другие — твердые, жидкие или газообразные вещества, то мы имеем дело с полимерными композиционными материалами (ПКМ).

Не следует думать, что ПКМ — изобретение последних лет. Первые армированные материалы на основе полимеров — битумную смолу, наполненную тростником, — использовали для строительных целей в Древнем Вавилоне более 5000 лет назад. Известно, что в Египте и в государствах Месопотамии в третьем тысячелетии до н.э., из этого же материала строили речные суда. Если внимательно проанализировать искусство мумифицирования, распространенное в Древнем Египте, то в основе его также можно найти способ получения полимерных композитов. В самом деле, тело после соответствующей обработки обматывали лентой из ткани и пропитывали природной смолой с образованием жесткого кокона.

Не что иное, как композиционные материалы, представляли собой луки азиатских кочевников (Китай, около 1000 г. до н.э.), изготовленные из древесины и слоев рога. Они были оружием с достаточно большим радиусом действия, наиболее пригодным для стрельбы с колесниц или для конницы. Еще более сложные конструкционные материалы, состоящие из сухожилий животных, древесины и шелка, соединенных с помощью клея, применяли для изготовления своих луков древние монголы.

Таким образом, начало технологии ПКМ уходит в древние времена. Обращая свой взор к нашему веку, отметим, что уже много десятилетий людям известны резина (вулканизованный каучук, наполненный сажей и другими веществами), пенопласты, бакелит (фенолформальдегидные смолы, наполненные текстильными волокнами). Правда, в этих материалах закономерность распределения наполнителя наблюдается не всегда. Поэтому конструкторы современной техники, как правило, называют полимерными композиционными материалами лишь такие, в которых имеются полимерная матрица и закономерное распределение упрочнителей (усиливающих наполнителей), чаще всего волокнистых.

Применение в самолето- и ракетостроении

Стремительное развитие авиационной техники (увеличение скорости, высоты и дальности полетов) заставляет конструкторов предъявлять все более жесткие требования к материалам, предназначенным для использования в самолетостроении. Каковы же эти требования?

Прежде всего, это повышенная механическая прочность и надежность, уменьшение и даже полное исключение вредного влияния вибрации. Материалы должны обладать хорошей устойчивостью к воздействию высоких и низких температур, а также различных атмосферных явлений. Для внутренних конструкций летательных аппаратов чрезвычайно важны негорючесть, химическая инертность, высокая звуко- и теплоизолирующая способность.

Посмотрим, например, насколько важна устойчивость к тепловому воздействию некоторых конструкционные элементов современных самолетов. Известно, что при полете за счет трения о воздух происходит разогрев обшивки самолета. При скорости 2500 км/ч обшивка нагревается до 150 °С. Понятно, что без хорошей полимерной теплоизоляции, которую помещают между двойными стенками корпуса, пассажиры не очень уютно чувствовали бы себя внутри такого самолета.

Оболочки (гондолы), в которые заключен авиационный двигатель, обычно подвергаются еще более жестким термическим воздействиям. Так, участки гондолы, находящиеся в зоне выхлопа, должны выдерживать действие пламени с температурой примерно 1100 °С в течение 15 мин. Высоки и температуры, наблюдаемые на кожухе компрессора (475°С) и в зоне турбины (545 °С).

Для конструирования космических кораблей требуются материалы, которые сохраняют работоспособность в особых условиях космического пространства. В чем же состоит специфичность этих условий? Во-первых, это отсутствие атмосферного давления: на высоте нескольких сотен километров от Земли давление воздуха составляет 10~8—10~9 мм рт. ст., а на высоте геостационарной орбиты (около 36000 км) — примерно 10~13 мм рт. ст. Столь высокий вакуум приводит к опасности испарения летучих компонентов материалов, разрыва трубопроводов и вентилей в системе двигателей. Во-вторых, это высокий уровень электромагнитного излучения с различными длинами волн (солнечная радиация и космические лучи), причем 10% солнечной радиации приходятся на длины волн менее 4000 А (или 400 нм), т.е на излучение, вызывающее светодеструкцию синтетических материалов. В эти 10% включен поток весьма небезопасных для многих материалов протонов и электронов, плотность которого на высоте 1000 км составляет впечатляющую величину — 108 частиц/ (см2-с). В-третьих, это температурные перепады окружающей среды — от —200 до +150° С. (Кроме того, от ракетных двигателей тепловые нагрузки на материал могут достигать 800 °С и выше.) В-четвертых, это наличие потока микрометеоритов, приводящих к разрушению поверхности летательного аппарата, и т.д.

Материалы, используемые внутри обитаемого отсека космических кораблей, помимо безусловной механической прочности, должны быть негорючими, нетоксичными и не должны создавать угрозу из-за скоплений электростатических зарядов на поверхности и т.д.

В некоторых особых случаях, например при посадках на поверхность Венеры, от конструкционных материалов требуется, чтобы они хотя бы непродолжительное время выдерживали одновременное воздействие температуры до 550 °С и давления до 90 атм. Из приведенных примеров ясно, какими исключительными качествами должны обладать материалы, используемые при постройке самолетов и космических кораблей, и какие сверхсложные задачи стоят перед создателями таких материалов.

Традиционные материалы для самолето- и ракетостроения, главным образом титановые сплавы и нержавеющие стали, удовлетворяющие большинству из перечисленных выше требований, постоянно улучшаются металлургами, однако в последние годы специалистами все чаще высказывается мнение, что более перспективным для этих целей является также использование полимерных композитов. Известна малая плотность ПКМ даже по сравнению с наиболее распространенными легкими авиационными сплавами. Действительно, замена металла в силовых элементах конструкции самолетов на полимерные композиционные материалы способна уменьшить их общую массу на 20—43%, что замедлило бы увеличение размеров самолетов и повысило бы их экономичность по расходу топлива. Специалисты США подсчитали, например, что для гражданских самолетов марки L-1011 фирмы «Локхид» и марки DC-10 фирмы «Дуглас» снижение массы на каждые 45 кг позволит экономить ежегодно около 6400 кг топлива.

Радиопрозрачность ПКМ также известна. Следует подчеркнуть, что полимерные композиционные материалы часто незаменимы при конструировании обтекателей, защищающих радарную аппаратуру на самих летательных аппаратах. Для обеспечения максимального прохождения волн от радарных установок композит должен обладать высокой однородностью, а обтекатель необходимо изготовлять с большой степенью точности. Дело в том, что реальные обтекатели не пропускают всех волн, излучаемых радарной аппаратурой. Наряду с пропусканием наблюдается и отражение радиоволн и их поглощение. При этом часть энергии волн может отражаться и возвращаться на передатчик, что приводит к уменьшению радиуса действия радарной установки. Таким образом, по прочности и по устойчивости к действию высоких температур изделия из композиционных материалов способны заменить многие металлические детали. Из сказанного вовсе не следует, что использование композитов исключает применение металлов. Эти две группы материалов могут успешно сочетаться. Наглядный пример тому — склеивание металлических поверхностей самолетной обшивки термостойким полимерным клеем. По мнению специалистов, традиционный способ крепления алюминиевых листов обшивки с помощью заклепок во многом уступает клеевым швам, которые не требуют сверления металла, обладают более высокой усталостной прочностью и не увеличивают неровности поверхности. Рассмотрим типы полимерных материалов, используемых в самолето- и ракетостроении, свойства и методы получения некоторых конкретных композиций.

Одними из первых композитов, нашедших применение в авиационной промышленности, были пенопласты. Эти материалы представляют собой вспененные полиэфируретаны, получаемые обработкой низкомолекулярных полиэфиров, содержащих реакционноспособные гидроксильные группы, диизоцианатами. При смешивании исходных компонентов (обычно жидких) начинается экзотермический процесс, сопровождающийся выделением углекислого газа; В результате реакционная масса становится все более вязкой, разбухает, поднимается, как тесто, отверждается и превращается в ячеистый материал — пенопласт. Такой способ был разработан в Германии в начале 1940-х годов; позже в ФРГ был налажен промышленный выпуск ячеистого пластика под торговым названием «мо-льтопрен». Этот материал использовался авиационной промышленностью в качестве заполнителя в средних слоях трехслойных конструкций крыла и хвостового оперения самолетов. Облицовочными материалами в этих случаях являлись металл и фанера.

Известны два метода получения изделий из жестких пенопластов. Первый из них предполагает использование формы, состоящей из двух частей — наружной и внутренней. В наружную (охватывающую) часть формы для изготовления обтекателя наливают предварительно смешанные исходные компоненты, после чего в нее опускают меньшую по размеру внутреннюю часть формы. Погружение осуществляют на глубину, соответствующую заданной толщине стенки обтекателя. В результате реакционная масса поднимается в кольцевом зазоре между двумя поверхностями. Перед заполнением пенообразующей массой внутреннюю поверхность охватывающей части и внешнюю поверхность внутренней части формы обычно покрывают полиэфирным пластиком. Предварительно обе поверхности для улучшения адгезии очищают пескоструйным способом. При использовании такого метода удается достаточно точно соблюдать заданную форму изделия.

Второй метод получения изделий из жестких пенопластов отличается от первого тем, что порожнюю форму закрывают крышкой и заполняют вспенивающейся массой через небольшие (около 2,5 см) отверстия в крышке. Такой способ применяют для заполнения конструкционных узлов самолетов, например элеронов.

Эластичные пеноматериалы из полиэфируретанов также привлекли внимание специалистов авиационной и ракетной техники. Эти материалы обладают прекрасными термоизоляционными свойствами, что позволяет использовать их для уменьшения выкипания ракетного топлива ракеты «Сентаур». К недостаткам полиэфируретановых материалов относится низкая устойчивость к воздействию повышенных температур и атмосферных факторов. Более атмосферостойкими оказались пластики па основе эпоксидных смол, с которыми мы сейчас познакомимся детальнее.

Свыше 90% из выпускаемых эпоксидных смол представляют собой олигомеры, получаемые по реакции ароматического двухосновного спирта бисфенола. Это вязкие жидкости и в. таком виде они редко находят применение. Для получения твердых прочных материалов необходимо сшить молекулы олигомеров в более длинные полимерные молекулы. Для сшивания используют отвердители, способные реагировать с концевыми реакционноспособными группами олигомеров при комнатной температуре или при нагревании до 60—200 °С. Другими примерами использования стеклонаполненных (эпоксидных смол являются материалы для зализа крыла и деталей интерьера гражданского самолета марки DC-Х-200 фирмы «Дуглас» и для сотовых конструкций космического аппарата, из которых изготовлены солнечные антенны.

Показательно, что из общего количества (4200 т). ПКМ, использованных в авиационной и космической технике США в 1981 г., стеклопластики составили около 3500 т. В 1991 г. ожидают увеличения этой цифры до 6000 т. Однако эпоксидные смолы, наполненные стекловолокном, имеют слишком низкий модуль упругости, чтобы, быть использованными в ответственных конструкционных і узлах современных самолетов. Гораздо более перспективными в этом отношении оказались эпоксидные смолы, наполненные волокнами элементного бора. Характерными свойствами композитов на основе борных волокон являются высокий модуль упругости, т.е. большая жесткость, в сочетании с низкой плотностью (на 27% меньше, чем плотность алюминия). В американском самолете марки F-111 применяются борэпоксидные стабилизаторы, передние кромки и закон-цовки крыльев. Законцовки крыльев легче традиционных алюминиевых почти на 16%: Горизонтальный стабилизатор этого самолета подвержен действию флаттера, т. е. сочетанию изгибающих и крутильных колебаний, опасных для конструкции, и поэтому должен обладать одновременно жесткостью и механической прочностью. В результате замены алюминиевого стабилизатора на борэпоксидный удалось снизить массу конструкции на 27%, сохранив вполне достаточную прочность. Композиционные материалы этого типа были использованы также при изготовлении винта вертолета «Боинг Вертол».

В последние годы эпоксидные смолы, наполненные углеродным волокном, широко используются для конструкционных деталей сверхзвуковых самолетов. При изготовлении этих материалов поверхность углеродных волокон подвергают специальной обработке для увеличения адгезии к смоле. Такая обработка обычно повышает прочность при изгибе, но снижает ударную вязкость. Для получения менее хрупких материалов, т.е. для увеличения их ударной вязкости, к углеродным волокнам добавляют небольшие количества стекловолокна.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее