122637 (Вакуумная коммутационная аппаратура)

2016-08-01СтудИзба

Описание файла

Документ из архива "Вакуумная коммутационная аппаратура", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "122637"

Текст из документа "122637"

СХЕМОТЕХНИЧЕСКОЕ И ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ ВАКУУМНОЙ КОММУТАЦИОННОЙ АППАРАТУРЫ

ВВЕДЕНИЕ

Необходимость всесторонней интенсификации экономики неразрывно связана с ускорением научно-технического прогресса, важнейшими направлениями которого являются создание и освоение принципиально новой техники и технологии, автоматизация и механизация производства. Выполнение этих задач требует, в частности, развития вакуумной техники, оказывающей определяющее влияние на создание и производство изделий электроники и все более широко используемой в других отраслях промышленности.

Разработка новых вакуумных технологий предъявляет к вакуумному оборудованию повышенные требования, разнообразный и меняющийся диапазон значений которых обуславливает необходимость модернизации и разработки новых конструкций его элементной базы, в частности, вакуумной коммутационной аппаратуры (ВКА): клапанов, затворов, натекателей, служащих для периодического сообщения и герметичного перекрытия вакуумных коммуникаций и управления вакуумным режимом. Конструкцией и правильной эксплуатацией ВКА, являющейся неотъемлемой частью вакуумных систем (ВС), в значительной степени определяется надежность работы вакуумного технологического оборудования. (ВТО). Вместе с тем традиционное проектирование, основанное на интуитивно-эмпирическом подходе, исходя из уровня знаний конструктора, не удовлетворяет в полной мере ужесточившимся требованиям к созданию ВКА (например, необходимости минимального воздействия потоков газовыделения и загрязнений на технологическую среду оборудования производства изделий электронной техники, работе при температурах 600 - 800 К, повышению показателей надежности в десятки раз и т.д.), что особенно заметно на примере цельнометаллической ВКА, показатели качества которой, начиная с начала 70-х годов по существу не улучшаются. В связи с этим существующие конструкции громоздки, имеют небольшой ресурс и наработку на отказ. Ситуация осложняется отсутвием единого научно обоснованного подхода к проектированию ВКА, что приводит к неоправданному ее многообразию, низкому качеству конструкций и, как следствие, к отказам и простоям дорогостоящего оборудования при эксплуатации. Кроме того, проявляется тенденция к значительному уменьшению сроков проектирования ВКА, которая наряду с указанными факторами вызывает необходимость автоматизации процесса проектирования.

Одним из выходов из сложившейся ситуации является разработка и применение новых развивающихся методик проектирования, позволяющих генерировать множество различных технических решений и проводить целенаправленный их поиск и выбор, исходя из технического задания (ТЗ), имеющего жесткие и иногда полярные требования.

Изложенное определило цель настоящей работы, которой является создание научно обоснованной методологии схемотехнического и функционального проектирования ВКА, направленной на решение проблем проектирования ВКА, с конкретной реализацией в виде новых конструкций ВКА и программно-информационных средств, предназначенных для анализа, синтеза и моделирования работы ВКА.

Принципиально функциональное и схемотехническое проектирование ВКА, заключающееся в синтезе и анализе ВКА на этапе технического предложения и содержащее оценку свойств ВКА на основе исследования процессов ее функционирования, генерацию и выбор принципиальных технических решений, определяющих структуру ВКА с учетом специфики ее функционирования в составе конкретной ВС, можно представить в виде последовательности: цель проектирования - функция - устройство (элементная структура), которая обуславливает необходимость формального описания структур, функций, свойств, объектов для определения проектных целей в виде изменения структур ВКА и определения связей свойств ВКА для построения этих структур.

Более детально модель процесса проектирования ВКА на начальных стадиях можно представить в виде алгоритма, укрупненная блок-схема которого приведена на рис. 1.

Согласно представленной блок-схемы, ТЗ на разработку ВКА определяется требованиями к ВС, являющейся для ВКА объектом более высокого уровня, а начальным этапом создания ВКА является поиск аналогов. Это объясняется нецелесообразностью разработки новой конструкции ВКА при наличии среди существующих вариантов ВКА конструкции, полностью удовлетворяющей предъявленным требованиям.

В случае отсутствия аналогов необходимо проанализировать ТЗ для выявления заведомо завышенных требований с целью их смягчения. Если данная процедура не приводит к нахождению аналога, то переходят к поиску прототипа - конструкции ВКА, наиболее полно соответствующей требованиям ТЗ. Сравнение параметров выбранной конструкции ВКА с требуемыми (ТЗ) позволяет сформировать потребительские цели проектирования ВКА в виде необходимости изменения соответствующих значений параметров ВКА или ее структурных составляющих.

Цели и критерии позволяют конструктору осуществлять направленный поиск и синтез технических решений ВКА. Исходя из целей, определяют необходимые функции и функциональные модули, их реализующие. Вводя соответствующие отношения среди найденных функциональных модулей, получают возможные структуры ВКА, из которых с помощью критериев выбирают структуру, наиболее отвечающую предъявленным требованиям ТЗ (происходит достижение проектной цели).

Отсутствие среди известных удовлетворительной функциональной структуры или появление новых функций для достижения потребительской цели проектирования ВКА приводит к необходимости синтеза физического принципа действия ВКА, являющегося этапом ее функционального проектирования, появлению новых функциональных модулей и повторению этапов схемотехнического проектирования ВКА для синтеза ее оптимальной элементной структуры.

Анализ приведенного алгоритма проектирования показал, что, помимо отмеченного отсутствия системного описания ВКА, удобного для постановки задач схемотехнического и функционального проектирования, достижение поставленной цели осложнено также отсутствием исследований процесса функционирования ВКА с позиций схемотехнического проектирования; формального описания структур ВКА и процесса их синтеза; формализованных научно обоснованных методов принятия решений при конструировании ВКА, что позволило сформулировать следующие основные задачи, подлежащие решению: - проведение системного анализа ВКА; - разработка системной модели процесса проектирования ВКА; - разработка методики и математических моделей процесса проектирования ВКА на уровне формирования ее структурных схем; - построение и исследование модели функционирования ВКА; - разработка формализованных методов выбора и критериев оптимальности при структурном синтезе ВКА; - разработка комплекса программных средств автоматизации начальных этапов проектирования ВКА; - разработка новых конструкций ВКА на основе использования созданного методического и информационно-программного обеспечений.

На защиту выносятся:

1. Системные модели ВКА и процесса ее функционального и схемотехнического проектирования.

2. Методика и математические модели функционально-схемотехнического проектирования ВКА.

3. Математические модели ВКА на этапах функционального и схемотехнического проектирования.

4. Методика и математическая модель оценки конструкций ВКА и ее структурных составляющих.

5. Результаты исследования математической модели функционирования ВКА и критерии оптимальности конструкций ВКА.

6. Новый класс ВКА переменной структуры и конструкции ВКА.

I. СОВРЕМЕННОЕ СОСТОЯНИЕ РАБОТ ПО СОЗДАНИЮ ВАКУУМНОЙ

КОММУТАЦИОННОЙ АППАРАТУРЫ

I.I. Анализ связей ВКА с оборудованием электронной

техники. Основные требования, предъявляемые к

ВКА.

Вакуум как рабочая среда технологических процессов и научных исследований находит возрастающее применение в различных отраслях промышленности. При этом основным потребителем элементов, средств и систем вакуумной техники является электронная техника, предъявляющая наиболее жесткие, зачастую противоречивые и трудно реализуемые требования к создаваемым ВС.

Используемое в электронной технике вакуумное технологическое и научное оборудование, интервалы рабочих давлений основных типов которого приведены на рис. I.I., по величине рабочего давления можно условно разделить на три группы: 1) установки с рабочим давлением до 5 10 Па; 2) установки с рабочим давлением до 1 10 Па; 3) оборудование с рабочим вакуумом выше 1 10 Па.

Как правило, получение вакуума в оборудовании первой группы достигается применением паромасляных диффузионных насосов с ловушками, позволяющими исключить наличие углеводородных соединений в рабочей среде; герметизация разъемных соединений осуществляется резиновыми прокладками [I - 5]. Подобные установки относятся к непрогреваемым системам, длительность откачки которых определяется, в основном, десорбцией паров воды [6 - 8]. Дополнительными требованиями к установкам данного типа могут служить необходимость получения определенного спектра остаточных газов [9, 10], исключение привносимой дефектности на изделие электронной техники [11 15], высокая (до 1600 К) температура в рабочей камере и повышенные требования к надежности работы из-за значительного экономического ущерба в случае отказа [16 - 18].

Оборудование второй группы [19 - 24] обеспечивает получение более низких парциальных давлений остаточных газов. В данной группе оборудования, в основном, используют безмасляные (турбомолекулярные, магнито- и электро-разрядные насосы) и комбинированные средства откачки [25 - 27]. В качестве уплотнений разъемных соединений применяются металлические прокладки и прокладки, изготовленные из термостойкой резины [28, 29]. Как правило, установки второй группы прогреваются до 400 - 650 К (оборудование для откачки электровакуумных приборов частично до 950 К), имеют достаточно большое время достижения рабочего давления (от 5 до 20 часов) [19, 30 - 33] и более жесткие требования к привносимой на изделие дефектности [34].

К третьей группе оборудования принадлежат уникальные системыускорители заряженных частиц [35 - 38], камеры для космических исследований и ряд технологических установок и научных приборов [39, 40]. Их отличие от вакуумных систем второй группы состоит в необходимости предварительной обработки и очистки материалов для вакуумных систем, длительном времени прогрева и откачки, использовании только металлических уплотнителей в разъемных соединениях. При этом время существования высокого вакуума в рабочем объеме может длиться месяцами и годами [29, 41 - 43].

Общим требованием ко всем группам вакуумного оборудования является автоматизация технологических процессов и научного эксперимента [44 - 46].

В свою очередь, требования к вакуумному оборудованию формируют требования к его элементной базе, в том числе к ВКА, которая, являясь неотъемлемой частью ВС вакуумного оборудования (например, только в одно- и двухкамерных установках число коммутационных устройств колеблется от 5 до 10, достигая 15 [20, 47]), во многом определяет его выходные характеристики. Так, производительность оборудования первой и второй групп определяется не только его конструкцией (однопозиционные установки периодического действия, установки полунепрерывного действия со шлюзовыми камерами, установки и линии непрерывного действия и др.), но и сокращением времени достижения рабочего давления, зависящим, в частности, от проводимости ВКА [48, 49].

Следует отметить и наметившуюся в последнее время в производстве изделий электронной техники тенденцию к понижению рабочего давления до 10 - 10 Па вследствие существенного влияния давления и парциального состава газовой смеси на параметры и свойства изделий [1, 19, 40], т.е. к использованию высоко- и сверхвысоковакуумного оборудования, требующего прогрева до 700 - 800 К и, следовательно, применения цельнометаллической ВКА, позволяющей сократить время достижения сверхвысокого вакуума в 2,5 раза и упростить обслуживание установок [25, 41]. С учетом отмеченного во введении критического состояния проектирования цельнометаллической ВКА целесообразно выделить для детального рассмотрения области ее применения, которые показаны на рис. I.2.

При этом, несмотря на достаточно четкую границу между группами оборудования с одинаковыми вакуумными характеристиками и условиями эксплуатации, определяющими основные свойства ВКА, к ней предъявляется множество разнообразных дополнительных требований, зависящих от конкретного случая использования, что ведет к увеличению номенклатуры ВКА, затрудняя проведение унификации и стандартизации вакуумного оборудования и повышая трудоемкость его проектирования и изготовления.

Анализ длительности технологических циклов и ресурса работы оборудования, проведенный по работам [19, 20, 24, 47, 48], позволяет судить о требуемом ресурсе и цикличности работы ВКА и показывает, что число циклов работы клапанов и затворов лежит в пределах 500 - 8000, а в ряде установок, имеющих длительность технологического процесса порядка десятков секунд (например, электронно-лучевых установок микросварки), их ресурс должен быть значительно большим - 20000 - 50000. Кроме того, особенностью ВКА является кратковременный циклический режим работы с большими промежутками между включениями: отношение времени работы к времени выстоя очень различно и в среднем находится в пределах 1 : (100 - 10000). Суммарное время нахождения механизмов ВКА в динамическом состоянии до замены уплотнительной пары составляет для ВКА с металлическим уплотнителем в среднем примерно 2 - 4 часа, для ВКА с резиновым уплотнением - 20 - 50 часов.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее