108998 (Системы персонального вызова), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Системы персонального вызова", который расположен в категории "". Всё это находится в предмете "наука и техника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "наука и техника" в общих файлах.

Онлайн просмотр документа "108998"

Текст 2 страницы из документа "108998"

В магнитометре с оптической накачкой используются 3 энергетических состояния, возможных для единственного валентного электрона цезия: 2 низких близкорасположенных состояния и одно состояние с более высокой энергией. Разница энергий между более низкими состояниями соответствует радиочастотным спектральным линиям, а переход между одним из более низких состояний и более высоким состоянием соответствует спектральной линии в оптической области.

Рассмотрим пары цезия при оптической накачке света с круговой поляризацией. Количество света, поглощаемое парами, измеряется при помощи фотодетектора. Первоначально некоторые электроны в парах будут находиться в одном из низких энергетических состояний и некоторые - в другом. Когда атомы поглощают фотоны света с круговой поляризацией, их угловой момент обязательно меняется на единицу. Таким образом, электроны, находящиеся в энергетическом состоянии, отличающемся от более высокого состояния на единицу углового момента, будут поглощать фотоны и переходить в более высокое состояние, а находящиеся в энергетическом состоянии с таким же угловым моментом, как и в более высоком состоянии, - не будут. Поскольку некоторые фотоны поглощаются, сила света уменьшится. Электрон, находящийся в более высоком состоянии, почти немедленно переходит в одно из более низких состояний. Каждый раз, когда электрон совершает этот переход, существует некоторая вероятность того,что он перейдет в состояние, в котором невозможно поглощение света. При достаточном времени почти все электроны перейдут в такое состояние. Пар, про который тогда говорят, что произошла его полная накачка, относительно прозрачен для света.

Если затем параллельно лучу света наложить ВЧ-поле, то оно перебросит электроны, изменяя при этом их спиновый угловой момент. Фактически РЧ-поле заставляет электроны перебрасываться из одного более низкого состояния в другое, "расстраивая" оптическую накачку. Как следствие, пар вновь начинает поглощать свет. Радиочастотные и оптические эффекты объединяются, давая особенно острый резонанс, и именно на этом резонансном явлении работает магнитометр с оптической накачкой.

Энергия, требуемая для опрокидывания спина электрона, и, следовательно, частота ВЧ-поля, зависят от силы магнитного поля. В магнитометре контур обратной связи управляет радиочастотой для поддержания минимального пропускания света. Таким образом, частота как бы служит мерой магнитного поля. Магнитометр с оптической накачкой измеряет общее магнитное поле любой ориентации в отличие от большинства магнитометров, которые измеряют только составляющую магнитного поля, лежащую вдоль чувствительной оси.

Чувствительность и динамический диапазон этого магнитометра подобно большинству магнитометров определяется регистрирующей электроникой. Типичные значения чувствительности прибора имеют предел от 10Е-14 до 10Е-6 А/м.

Датчик имеет большие габариты и высокое потребление мощности (несколько ватт). Конструкция оптического магнитометра показана на рис. 1.5.

1.2.4. Ядерный прецессионный магнитометр.

В ядерном прецессионном магнитометре используется реакция ядер атомов в жидких углеводородах, например бензоле, на воздействие магнитного поля. Протоны в ядрах атомов можно рассматривать как малые магнитные диполи; поскольку они вращаются и обладают электрическим зарядом, у них есть небольшой магнитный момент, подобный в некоторых отношениях угловому моменту вращающегося гироскопа. С помощью однородного магнитного поля, создаваемого при прохождении тока через катушку, протоны в жидкости могут быть временно выстроены в ряд. Когда поляризационный ток выключается, происходит прецессия протонов относительно окружающего магнитного поля. Ось спина протона, не выстроенного постоянным магнитным полем, подобно оси гироскопа вне линии гравитационного поля, проходит по окружности относительно линии, параллельной полю. Скорость прохождения, называемая частотой прецессии, зависит от силы измеряемого магнитного поля. Прецессирующие протоны генерируют в катушке сигнал, частота которого пропорциональна величине магнитного поля. Конструкция этого магнитометра показана на рис. 1.6.

Ядерный прецессионный магнитометр имеет диапазон чувствительности от 10Е-13 до 10Е-4 А/м, а их частотный диапазон ограничен стробирующей частотой жидкого водорода.

1.2.5. СКВИД-датчик.

Сверхпроводящий квантовый интерференционный датчик (СКВИД) является самым чувствительным датчиком магнитного поля. Это устройство основано на взаимодействии электрических токов и магнитных колебаний, наблюдаемых при охлаждении материала ниже температуры перехода в сверхпроводящее состояние. Конструкция датчика приведена на рис. 1.7.

Если линии магнитного поля проходят через кольцо из сверхпроводящего материала то в нем индуцируется ток. При отсутствии возмущений ток будет протекать сколько угодно долго. Величина индуцированного тока является весьма чувствительным индикатором плотности потока поля. Кольцо может реагировать на изменение поля, соответствующее долям одной квантовой единицы магнитного потока. При наличии в кольце тонкого перехода (переход Джозефсона) в нем наблюдаются колебания тока. Кольцо соединяют с ВЧ схемой, которая подает известное поле смещения и детектирует выходной сигнал. При взаимодействии двух двух волн образуется итерференционные полосы, подобно световым волнам. Подсчет полос позволяет с высокой точностью определить величину магнитного поля.

Кольцо изготавливают из свинца или ниобия диаметром несколько миллиметров. Для увеличения чувствительности его иногда включают в более крупную катушку. Диапазон измеряемых полей равен от 10Е-16 до 10Е-10 А/м.

1.2.6. Магниторезисторы.

Магниторезисторами называют полупроводниковые приборы, сопротивление которых меняется в магнитном поле. Поскольку эффект магнитосопротивления максимален в полупроводнике не ограниченом в направлении перпендикулярному току, то в реальных магниторезисторах стремятся максимально приблизится к этому условию. Наилучшим типом неограниченного образца является диск Карбино (см. рис. 1.8а).

Отклонение тока в таком образце при отсутствии магнитного поля нет и он направлен строго по радиусу. При наличии поля путь носителей заряда удлиняется и сопротивление увеличивается. Другой структурой магниторезистора является пластина ширина которой много больше длины (рис. 1.8б). Эти две структуры обладают наибольшим относительным изменением сопротивления в магнитном поле. Однако их существенным недостатком является малое абсолютное сопротивление при B=0, что обусловлено их конфигурацией. Для увеличения R применяют последовательное соединение резисторов. Например, в случае пластины используется одна длинная пластина из полупроводника с нанесенными металлическими полосками, делящими кристалл на области длина которых меньше ширины. Таким образом, каждая область между полосками представляет собой отдельный магниторезистор.

Магниторезисторы обладают довольно большой чувствительностью. Она лежит в пределах от 10Е-13 до 10Е-4 А/м. Наибольшей чувствительностью обладают магниторезисторы изготовленные из InSb-NiSb.

1.2.7. Магнитодиоды.

Магнитодиод представляет собой полупроводниковый прибор с p-n переходом и невыпрямляющими контактами, между которыми находится область высокоомного полупроводника.

Действие прибора основано на магнитодиодном эффекте. В "длинных" диодах (d/L >> 1, где d - длина базы, L - эффективнная длина дифузионного смещения ) распределение носителей, а следовательно сопротивление диода (базы) определяется длиной L Уменьшение L вызывает понижение концентрации неравновесных носителей в базе, т. е. повышение ее сопротивления. Это вызывает увеличение падения напряжения на базе и уменьшение на p-n переходе (при U=const). Уменьшение падения напряжения на p-n переходе вызывает снижение инжекционного тока и следовательно дальнейшее увеличение сопротивление базы. Длину L можно изменять воздействуя на диод магнитным полем. Оно приводит к закручиванию движущихся носителей и их подвижность уменьшается, следовательно уменьшается и L. Одновременно удлиняются линии тока, т. е. эффективная толщина базы растет. Это и есть магнитодиодный эффект.

Нашей промышленностью выпускается несколько типов магнитодиодов. Их чувствительность лежит в пределах 10Е-9 до 10Е-2 А/м. Существуют также магнитодиоды способные определять не только напряженность магнитного поля но и его направление.

1.2.8. Магнитотранзисторы.

Существует множество типов магнитотранзисторов. Они могут быть и биполярными, и полевыми, и однопереходными. Но наибольшей чувствительностью обладают двухколекторные магнитотранзисторы (ДМТ). Структурная схема и способ включения ДМТ показаны на рис. 1.10.

ДМТ - это четырех электродные полуроводниковые приборы планарной или торцевой топологии. Инжектирующий контакт, эмиттер, расположен между симметричными коллекторами. Четвертый контакт - базовый. Магнитное поле в зависимости от направления отклоняет инжектированные носители к одному из коллекторов и изменяет распределение токов между коллекторами. Разность токов коллекторов и определяет величину измеряемого магнитного поля. Она пропорциональна индукции магнитного поля, а знак показывает его направление. В области слабых полей ДМТ обладает очень высокой магниточувствительностью и хорошей линейностью ампер-тесловой характеристики. Они используются в аппаратуре требующей измерения индукции и знака магнитного поля, например, в магнитных компасах. В основном используются кремний и германий. Чувствительность магнитотранзисторов лежит в пределах 10Е-8 до 10Е-4 А/м.

1.2.9. Датчик на эффекте Холла.

Рассмотрим пластину полупроводника р-типа через которую протекает ток, направленный перпендикулярно внешнему магнитному полю. Сила Лоренца отклоняет дырки к верхней грани пластины, в следствии чего их концентрация там увеличивается, а у нижней грани уменьшается. В результате пространственного разделения зарядов возникает электрическое поле, направленное от верхней грани к нижней. Это поле препятствует разделению зарядов и, как только создаваемая им сила станет равной силе Лоренца, дальнейшее разделение зарядов прекратится.

Разность потенциалов между верхней и нижней гранями образца равна :

V = E*a = v*B*a,

где а - ширина образца в направлении протекания тока, B напряженность магнитного поля, v - скорость носителей. Наиболее существенное достоинство датчика Холла при измерении им напряженности магнитного поля - это линейность измеряемого напряжения от индукции магнитного поля. Датчики работают в диапазоне от 10Е-5 до 1 А/м.

Датчики Холла изготавливают либо из тонких полупроводниковых пластин, либо из напыленных тонких пленок. Для изготовления используются полупроводники с высокой подвижностью носителей заряда.

1.2.10. Волоконно-оптический магнитомер.

Волоконно-оптический магнитомер (ВОМ) представляет собой новый вид датчика, который находится еще в процессе разработки. В нем используются два стекловолоконных световода, образующих интерферометр Маха-Цандера. Луч лазера проходит через светоделитель в оба волокна и рекомбинирует в сумматоре, поступая затем на фотодетектор в конце каждого волокна. Один из световодов либо намотан на магнитострикционный материал, либо покрыт им. Размеры магнитострикционного материала зависят от степени его намагничености. Когда такой материал намагничивается внешним полем, длина волокна изменяется. При изменении (на долю длины волны) луч, проходящий через световод, приходит в сумматор со сдвигом по фазе относительно луча, проходящему по эталонному световоду. Интенференция двух световых волн вызывает изменение уровня света на фотодетекторах, величина которого равна разности фаз.

ВОМ имеет чувствительность от 10Е-15 до 10Е-5 А/м. Он может использоваться для обнаружения либо постоянных полей, либо полей, меняющихся с частотой до 60 КГц. Его размеры зависят от требуемой чувствительности, но обычно он имеет около 10 см в длину и 2.5 см в ширину. Большим недостатком является сильные шумы и чувствительность к вибрациям.

1.2.11. Магнито-оптический датчик.

В магнито-оптическом датчике (МОД) используется эффект открытый Фарадеем. Этот эффект заключается во вращении плоскости поляризационного света при прохождении через магнитный материал. Эффект максимально выражен в некоторых кристаллах при юстировке направления распространения света, оси кристалла и приложенного магнитного поля. Примем, что плоская волна поляризационного света составлена из двух волн с круговой поляризацией - правополяризованной (ПП) и левополяризован ной (ЛП). Вращение плоскости поляризации плоской волны происходит за счет изменения относительных фаз ПП и ЛП волн. Тогда эффект Фарадея является результатом изменения показателя преломления кристалла, зависящего от того, происходит ли прецессия электронов в кристалле относительно продольного магнитного поля в том же самом или в противоположном направлении, что и вращение электрического поля света с круговой поляризацией.Коэффициентом, определяющем степень эффективности материала, является постоянная Верде, имеющая размерность единиц углового вращения на единицу приложенного поля и на единицу длины.

Важным преимуществом этих датчиков являются их очень малая инерционность и широкая полоса частот на которых они работают. Были изготовлены датчики с гигагерцовой частотной характеристикой. Нижний предел чувствительности датчиков равен 10Е-6 А/м .

Пpинцип pаботы пьезоэлектpического тpансфоpматоpа

Пьезозлектpический элемент с тpемя и более электpодами, подключаемыми к одному или нескольким источникам электpического сигнала и нагpузкам, условно может быть назван пьезоэлектpическим тpансфоpматоpом. Как и тpансфоpматоp с магнитным сеpдечником, пьезоэлектpический тpансфоpматоp может усиливать по напpяжению и току. Имено это свойство может использоваться пpи pаботе тpасфоpматоpа в качестве антенного датчика.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее