fizika_criminal (Применение физики в криминалистических исследованиях), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Применение физики в криминалистических исследованиях", который расположен в категории "". Всё это находится в предмете "криминалистика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "криминалистика" в общих файлах.

Онлайн просмотр документа "fizika_criminal"

Текст 2 страницы из документа "fizika_criminal"

Для создания объемных эффектов очень важно уметь использовать «игру» светотени. У обычного оптического микроскопа осветительное устройство дает почти параллельный поток лучей, которые направлены к объекту практически под прямым углом. Стереомикроскоп позволяет осветить объект с любой стороны. Тем самым удается рассмотреть многие детали объекта, обычно скрытые в тени, и сохранить светотеневые эффекты.

Максимальное увеличение почти никогда не бывает больше 50-кратного, использовать более сильное увеличение нецелесообразно, потому что при этом начинает падать резкость изображения. Однако для выявления судебных улик очень сильного увеличения и не требуется, потому что и при 50-кратном увеличении размер предметов увеличится от 10 мкм в натуре до 0,5 мм при рассмотрении в микроскопе. Такие размеры уже вполне различимы человеческим глазом.

2.3. Электронный микроскоп

При исследовании микрообъектов бывает очень важно выяснить их морфологические характеристики, и для этого используют данные, полученные с помощью растрового электронного микроскопа.

Известно, что пучок электронов, также как и поток света, в одних случаях проявляет свойства дискретных частиц, а в других – волновые свойства. Эти особенности лежат в основе получения изображения с помощью электронного микроскопа. Длина волны электронного пучка, который перемещается под действием электрических и магнитных полей, зависит только от энергии электронов. Чем выше эта энергия, тем меньше длина волны. У электронов, ускоряемых полем с напряжением 60 000 В, длина волны составляет 0,005 нм. Как и световые оптические приборы, электронные микроскопы позволяют «видеть» (т.е. разрешать) объекты, находящиеся друг от друга на расстоянии порядка половины длины волны. Однако на практике трудноустраняемые дефекты электронных микроскопов ограничивают предельное разрешение: разрешаются точки, отстоящие друг от друга на расстояние в несколько десятых нанометра. Это почти в 1000 раз лучше предельного разрешения оптического микроскопа.

В электронном микроскопе (рис.5) источником электронов служит раскаленная вольфрамовая спираль. Испускаемые электроны ускоряются в электрическом поле при наложении напряжения в несколько десятков тысяч вольт. Роль, которую в световом оптическом микроскопе играют оптические линзы, у электронных микроскопов выполняют электростатические или магнитные поля. И в оптическом, и в электронном микроскопе изображение формируется в соответствии с законами геометрической оптики, однако в отличие от светового излучения, распространяющегося прямолинейно, пучок электронов перемещается в поле по спирали. Траектория движения электрона резко изменится, если на своем пути эта частица столкнется с газообразными атомами и молекулами. Поэтому, прежде чем начинать работу, надо добиться, чтобы пространство внутри микроскопа не содержало ни воздуха, ни других газов. С этой целью в микроскопе создается разрежение (давление < 10-2 – 10 -3 Па), и в дальнейшем вся работа ведется в условиях так называемого глубокого вакуума.

Электронно-микроскопическое изображение создается потоком электронов, невидимых для человеческого глаза, и поэтому его нельзя воспринимать визуально. Чтобы полученное изображение сделать видимым для глаза, пучок электронов подают на специальные экраны, покрытые светящимися составами.

Особенности строения поверхности различных объектов чаще всего исследуют с помощью растрового электронного микроскопа. В этом микроскопе на объект подается очень тонкий пучок электронов. Такой пучок с помощью специальных полей отклоняется, последовательно («по строчкам») «обегает» все точки объекта и формирует изображение поверхности. Однако изображение создается не электронным пучком, который падает на образец, а так называемыми вторичными электронами; последние выбираются из образца электронным «лучом», улавливаются приемником-коллектором и преобразуются в электрический сигнал, который затем усиливается и используется для создания изображения уже на экране.

По сравнению с оптическим растровый электронный микроскоп отличается не только более высокой разрешающей способностью, но и значительно лучшей глубиной резкости. Предположим, например, что на какой-то поверхности отдельные детали вполне различимы при 500-кратном увеличении. Если эта поверхность совершенно ровная, ее можно исследовать с помощью светового микроскопа, который дает большие увеличения. Однако если на поверхности имеются неровности, необходимо использовать электронный микроскоп, потому что при 500-кратном увеличении в световом микроскопе рельеф поверхности достаточно четко прослеживается на глубину лишь 1-2 мкм от плоскости поверхности. Поэтому, наблюдая поверхность обрывков первичных волокон с сечением 20-30 мкм в оптическом микроскопе, можно различить только наиболее крупные детали, а многие особенности морфологии останутся неразличимыми. В электронном микроскопе мы увидим очень четкое объемное изображение такого волокна, и его поперечный срез можно исследовать очень подробно.

2.4. Основные физические методы, используемые для выявления плохо

видимых и невидимых следов

Основой выделения таких следов является усиление контраста между следом и фоном предмета-носителя, на котором расположен след. Усиливаемый контраст бывает яркостным и цветовым. Первый относится к усилению яркости беспигментных следов, второй – к усилению цветоразличения, т.е. к делению объектов одного цвета, но разной степени насыщенности или двух цветов, один из которых маскирует другой. Разновидностью яркостного контраста является теневой. Он возникает за счет такого освещения рельефного объекта, при котором возвышающиеся детали рельефа отбрасывают тени на соседние участки, благодаря чему становятся отчетливо различимыми. Так, неглубокие вдавленности (0,1-0,2 мм) можно обнаружить при освещении объекта боковым косопадающим светом.

Усилением теневого контраста широко пользуются при работе со всеми рельефными (объемными) следами в трасологии, судебной баллистике. Особое внимание при идентификации таким следам уделяют тому, чтобы и исследуемый, и экспериментальный следы были освещены одинаковым образом. За счет усиления яркостного контраста могут быть обнаружены и поверхностные следы. Так, в косопадающем свете удается выявить следы, являющиеся блестящими по отношению к поверхности. Неокрашенные следы, отличающиеся от фона только структурной поверхностью (след резиновой обуви на паркете) или оптическими свойствами вещества (потожировые следы папиллярных узоров), нередко удается обнаружить, усилив яркостный контраст следа и фона за счет освещения. На фоне блестящей поверхности следы могут казаться матовыми (темными). Происходит это за счет поглощения следом части лучей света или их рассеивания. На прозрачных предметах следы обнаруживают в косонаправленном проходящем свете.

Как мы видим, все эти приемы основаны на законах отражения известных из раздела оптики.

Для усиления цветового контраста используют методы цветоделения: подбирают светофильтры и чувствительные к определенным зонам фотоматериалы, обеспечивающие четкое изображение следов на предмете. Подбор светофильтров осуществляется либо эмпирически (методом проб и ошибок), либо расчетно-теоретическим путем, с предварительным фотометрированием объектов.

Если следы отражают или поглощают невидимые ультрафиолетовые или инфракрасные лучи, то для их обнаружения используют электронно-оптические преобразователи (отпечаток окровавленной поверхности орудия преступления на одежде жертвы) или ультрафиолетовые осветители.

Если вещество следа может содержать радиоактивные изотопы, то для его обнаружения прибегают к методам радиографии. При выявлении следов давления на металле, которые в последствии были сглажены (перебитые номера), применяют электролитические методы или проявляют следы в магнитном поле с помощью специальных суспензий. При расположении следов на внутренних частях металлических устройств (следы взлома в замке, следы внутри оружия) для обнаружения следов нарушения частей механизмов используют рентгенографию и гаммаграфию.

3. ИССЛЕДОВАНИЕ СОСТАВА И ВНУТРЕННЕЙ СТРУКТУРЫ ОБЪЕКТОВ

3.1. Понятие внутренней структуры материальных источников информации

Объект как материальный источник информации, изучаемый криминалистами, - это целостная система взаимосвязанных свойств, придающая ему качественную и количественную определенность. Каждый объект обладает неисчерпаемым множеством свойств. Однако криминалист-исследователь подвергает изучению лишь те из них, которые могут отразиться в материальной среде преступления, и доступны научному познанию с использованием достижений современной науки и техники.

Характерным для современного периода развития криминалистики является стремление решать комплекс криминалистических задач, вплоть до идентификации единичного объема с максимально широким использованием информации о его внутренней структуре.

Структура вообще – это относительно устойчивая связь элементов, их отношений, обусловливающая целостность объекта. В криминалистике методологически важно различать при учете их неразрывной связи внешнее и внутреннее строение объектов.

Внешнее строение объекта, его форма в широком смысле слова проявляют себя непосредственно во внешних связях и взаимодействиях вещей: оно обусловлено внутренним строением, составом объекта. Граница «внешнего» и «внутреннего» в ряде случаев условна, например, при исследовании внешнего строения микрочастиц, волокон тканей, кристаллов.

В криминалистических исследованиях критерий разграничения внешних и внутренних свойств, внешности и внутреннего строения обусловлен механизмом их проявления, отражения в следах преступления. Если взаимодействие материальных тел осуществляется в пространственных границах и связано с изменением последних, то в процессе криминалистического исследования используются признаки внешнего строения; если взаимодействие связано с изменением вне внутренней структуры, физических, химических и биологических свойств объекта, то при криминалистическом исследовании на основе специально разработанных методик используются эти последние. Вместе с тем учет неразрывной связи внешнего и внутреннего строения является методологической основой комплексного использования признаков внешнего и внутреннего строения в криминалистических исследованиях.

К числу свойств внутреннего строения относятся: внутренняя структура, химический состав (элементный, молекулярный, изотопный), физические свойства объектов.

В связи с развитием криминалистических аналитических инструментальных методов последовательно расширяется круг исследуемых объектов, в который в настоящее время включаются жидкие и газообразные, сыпучие и другие тела, не имеющие устойчивой внешней формы.

Объекты криминалистической идентификации выделяются и индивидуализируются по комплексу свойств внутреннего строения объекта, а именно: а) общему компонентному составу (структуре) объекта (размещению его компонентов); б) субмикроскопической структуре; в) химическому составу – элементному, молекулярному, изотопному; г) фракционному составу – виду и соотношению компонентов (например, связующих наполнителей, пигменту лакокрасок); д) физическим (или физико-химическим) константам – твердости, температуры плавления, теплоемкости, электропроводности, плотности и т.п.

3.2. Методы и техника исследования состава и внутренней структуры

объектов

Методы криминалистического исследования могут классифицироваться в зависимости от характера изучаемых свойств для исследования:

1)морфологических свойств объекта, в том числе отображающихся в следах (визуальные, измерительные, фотографические, микроскопические, иные физико-технические);

2) компонентного состава смесей, сложных разнокачественных частей изделия, агрегата. Для этого наряду с вышеназванными, могут использоваться хроматографические исследования, рентгеновский фазовый анализ, биологический анализ фракционного состава почвы и др.;

3) внутренней структуры объекта: инртоскопические, микроскопические, кристаллографические исследования, рентгеновский фазовый анализ, рентгено-структурный анализ и т.п.;

4) физических констант – цвета, упругости, проводимости, магнитных, электрических и других свойств – специализированные физико-технические устройства, приборы;

5) атомного (элементного) состава объекта – вещественного доказательства – группа спектральных методов анализа и др.;

6) молекулярного состава объекта – вещественного доказательства – комплекс методов молекулярной спектроскопии;

7) физико-химических свойств объектов экспертизы –электронно-химические методы (полярография, электрофорез, электрография).

Рассмотрим общие характеристики и возможности отдельных методов для изучения состава и внутренней структуры вещественных доказательств.

3.2.1. Методы анализа химического состава

3.2.1.1. Атомно–эмиссионная спектрометрия

Атомно-эмиссионная спектрометрия применяется как метод элементного анализа вещества. Принципиально метод основан на том, что измеряются спектры испускания (разность энергии электронов на энергетических уровнях, расположенных на периферии атома, то есть валентных электронов). Поскольку эти величины характеристические для каждого элемента, по положению линий в эмиссионных спектрах можно судить о составе исследуемого вещества.

Известно, что при нагревании тела скорость перемещения (диффузии) отдельных компонентов увеличивается По мере увеличения температуры твердого тела, прежде всего, разрушается кристаллическая решетка, затем вещество переходит в жидкое состояние и, в конце концов, происходит испарение (переходит в пар). Что же произойдет при дальнейшем повышении температуры? Представим себе, танцевальные пары в переполненном зале вынуждены двигаться все быстрее и быстрее; столкновения станут неизбежны со всеми вытекающими последствиями. В паровой фазе также при нагревании, то есть при поступлении дополнительной энергии, молекулы вынуждены разрушаться, то есть диссоциировать на отдельные атомы. Энергию, сообщаемую атомам при многократных соударениях, прежде всего воспримут электроны, расположенные на внешних оболочках, то есть валентные электроны. Допустим, что после очередного удара валентный электрон поглощает дополнительную энергию. Если последняя достаточна для перехода электрона на незанятый электронный уровень с более высокой энергией, совершается соответствующий электронный переход, и атом оказывается в так называемом возбужденном состоянии. Возбужденное состояние атома неустойчиво, и рано или поздно электрон вновь возвратится на свою основную орбиту, и атом потеряет приобретенную энергию, испуская фотон (рис.6).

Итак, энергия излучения (фотона) равна разности энергетических уровней двух электронных орбит, между которыми произошел переход, и, как мы уже говорили, эта величина зависит от природы атома. За исключением металлов, составляющих первую группу периодической системы, все атомы обладают несколькими валентными электронами, расположенными, как правило, на нескольких валентных электронных орбитах (уровнях). Таким образом, для переходов валентных электронов может быть использовано несколько орбит, и в зависимости от того, на какой энергетический уровень выйдет электрон при переходе атома в возбужденное состояние, меняется и энергия фотона, испускаемого при возвращении атома в основное состояние. Поэтому атом характеризуется не одной полосой испускания, а набором (спектром) этих полос.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее