62890 (Радиоволновые, радиационные методы контроля РЭСИ. Методы электронной микроскопии), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Радиоволновые, радиационные методы контроля РЭСИ. Методы электронной микроскопии", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "62890"

Текст 2 страницы из документа "62890"




1

2

3

Амплитудно-фазовый, спектраль­ный

-

качестве прие-мо-передающих антенн использу­ются две одинако­вые антенны.

Амплитудно-фазовый, геометри­ческий, временной, поляризационный

-

Амплитудный, голо-графический.

В качестве прием­ной используется многоэлементная антенна.

Обозначения: - антенна преобразователя;

- нагрузка.

1 – СВЧ-генератор; 2 – объект контроля; 3 – СВЧ-приемник; 4 – линза для создания (квази) плоского фронта волны; 5 – линза для формирования радио-изображения; 6 – опорное (эталонное) плечо мостовых схем.

Примечание: допускается применение комбинаций схем расположения антенн преобра­зователя по отношению к объекту контроля.

Растровая электронная микроскопия (РЭМ). Сфокусированный пучок элект­ронов 1 (рис. 2) диаметром 2-10 нм с помощью отклоняющей системы 2 перемещается по поверхности образца, (либо диэлектрической пленки З1, либо полупроводника З-11.) Синхронно с этим пучком электронный пучок перемеща­ется по экрану электронно-лучевой трубки. Интенсивность электронного луча моделируется сигналом, поступающим с образца. Строчная и кадровая разверт­ка пучка электронов позволяют наблюдать на экране ЭЛТ определенную пло­щадь исследуемого образца. В качестве модулирующего сигнала можно исполь­зовать вторичные и отражательные электроны.

Рисунок 1 – Классификация радиационных методов

Рисунок 2 – Режимы работы растровой электронной микроскопии

а) контраст в прошедших электронах; б) контраст во вторичных и отраженных электронах; в) контраст в наведенном токе (З11 - ус­ловно вынесен за пределы прибора). 1 – сфокусированный луч; 2 – отклоняющая система; 3 – объект исследования - диэлектричес­кая пленка; 4 - детектор вторичных и отраженных электронов; 5 -усилитель; 6 - генератор развертки; 7 - ЭЛТ; 8 - сетка детектора; 9 -отраженные электроны; 10 - вторичные электроны.

Просвечивающая электронная микроскопия (ПЭМ) основана на поглоще­нии, дифракции электронов взаимодействия с атомами вещества. При этом про­шедший через пленку сигнал снимается с сопротивления, включаемого после­довательно с образцом З1. Для получения изображения на экране используются мощные линзы, располагаемые за образцом. Стороны образца должны быть плос­копараллельными, чистыми. Толщина образца должна быть много меньше дли­ны свободного пробега электронов и должна составлять 10.. 100 нм.

ПЭМ позволяет определить: формы и размеры дислокаций, толщину образцов и профиль пленок. В настоящее время существуют ПЭ микроскопы до 3 МэВ.

Сканирующая электронная микроскопия (СЭМ).

Изображение формируется как за счет вторичных электронов, так и за счет отраженных электронов (рис. 2). Вторичные электроны позволяют определить химический состав образца, а отраженные – морфологию его поверхности. При подаче отрицательного потенциала - 50 В происходит запирание малоэнергетичных вторичных электронов и изображение на экране становится контрастным, поскольку грани, расположенные под отрицательным углом к детектору, не про­сматриваются вообще. Если на сетку детектора подать положительный потенци­ал (+250 В), то вторичные электроны собираются с поверхности всего образца, что смягчает контрастность изображения. Метод позволяет получить информа­цию о:

- топологии исследуемой поверхности;

- геометрическом рельефе;

- структуре исследуемой поверхности;

- коэффициенте вторичной эмиссии;

- об изменении проводимости;

- о местоположении и высоте потенциальных барьеров;

- о распределении потенциала по поверхности и в поверхности (за счет заряда по поверхности при облучении электронами) при попадании сканирующего луча на поверхность полупроводниковых приборов в ней наводятся токи и напряжения, которые изменяют траектории вторичных электронов. Элементы ИМС с положительным потенциалом по сравнению с участками, имеющими более низкий потенциал, выглядят темными. Это обуславливается наличием замедляющих по­ лей над участками образца с положительным потенциалом, которые приводят к уменьшению сигнала вторичных электронов. Потенциально-контрастные измерения дают только качественные результаты из-за того, что замедляющие поля зависят не только от геометрии и напряжения пятна, но и от распределения напряжения по всей поверхности образца;

- большого разброса скоростей вторичных электронов;

- потенциальный контраст накладывается на топографический и на кон­ траст, связанный с неоднородностью состава материала образца.

Режим наведенного (индуцированного электронно-лучевого тока).

Электронный луч с большой энергией фокусируется на маленькой площади микросхемы и проникает через несколько слоев ее структуры, в результате в полупроводнике генерируются электронно-дырочные пары. Схема включения образца представлена на (рис.2, в). При соответствующих внешних напряжениях, приложенных к ИМС, измеряются токи обусловленные вновь рожденны­ми носителями заряда. Этот метод позволяет:

- определить периметр р-n перехода. Форма периметра оказывает влияние на пробивные напряжения и токи утечки. Первичный электронный луч (2) (рис. 3 и 4) движется по поверхности образца (1) в направлениях х, и в зависимости от направления перемещения меняется значение индуцированного тока в р-n переходе. По фотографиям р-n перехода можно определить искажения периметра р-n перехода (рис.5).

- определить места локального пробоя р-n перехода. При образовании локального пробоя р-n перехода в месте пробоя образуется лавинное умножение носителей тока (рис.6) Если первичный пучок электронов (1) попадает в эту область (3), то генерированные первичными электронами электронно-дырочные пары также умножаются в р-n переходе, в результате чего в данной точке будет зафиксировано увеличение сигнала и соответственно появление светлого пятна на изображении. Изменяя обратное смещение на р-n переходе, можно выявить момент образования пробоя, а проведя выявление структурных дефектов например с помощью селективного травления или с ПЭМ, можно сопоставить область пробоя с тем или иным дефектом.

Рисунок 3 – Схема прохождения электронного луча

Рисунок 4 – Изображение торцевого р-п-перехода с целью

определения его периметра

1 – торцевой р-n переход; 2 – электронный луч;

3 – область генерации электронно-дырочных пар.

Рисунок 4 – Изображение планарного р-п-перехода с целью

определения его периметра

1 - планарный р-n переход; 2 - электронный луч;

3 - область генерации электронно-дырочных пар.

Рисунок 5 – Искажения периметра планарного p-n-перехода сверху

- наблюдать дефекты. Если в области р-n перехода находится дефект (4) (рис. 6), то при попадании первичного пучка электронов в область дефекта некоторая часть генерированных пар рекомбинирует на дефекте, и соответственно до границы р-n перехода дойдет меньшее число носителей, что уменьшит ток во внешней цепи. На фотографии р-n перехода эта область будет выглядеть более темной, чем остальной фон. Изменяя соотношение между глубиной залегания р-n перехода и проникновением первичных электронов можно зондировать элек­трическую активность дефектов, располагающихся на разной глубине. Наблю­дение дефектов можно проводить при обратных и прямых смещениях р-n пере­хода.

Электронная оже-спектроскопия (ЭОС).

Она состоит в получении и анализе спектра электронов, испускаемых атома­ми поверхностей при воздействии на него электронным лучом. Такие спектры несут информацию:

- о химическом (элементном) составе и состоянии атомов поверхностных слоев;

- о кристаллической структуре вещества;

- о распределении примесей по поверхности и диффузионных слоях; Установка для оже-спектроскопии состоит из электронной пушки, энергоанализатора оже-электронов регистрирующей аппаратуры и вакуумной системы.

Рисунок 6 – Изображение планарного p-n-перехода с целью определения про­боя и выявления дефекта.

1 – эелектронный луч; 2 – планарный р-п-переход; 3 – металлическая примесь; 4 – дефект.

Электронная пушка обеспечивает фокусировку электрического пучка на об­разце и его сканирование. Диаметр пучка в установках с локальным оже-анализом составляет 0,07... 1 мкм. Энергия первичных электронов изменяется преде­лах 0,5... 30 кэВ. В установках оже-спектроскопии обычно в качестве энергоана­лизатора употребляется анализатор типа цилиндрического зеркала.

Регистрирующее устройство с помощью двухкоординатного самописца фик­сирует зависимость , где: N – число электронов, попадающих на коллек­тор;

Ек – кинетическая энергия оже-электронов.

Вакуумная система установки ЭОС должна обеспечивать давление не более 107 – 108Па. При худшем вакууме остаточные газы взаимодействуют с поверх­ностью образца и искажают анализ.

Из отечественных установок ЭОС следует отметить растровый оже-спекто-рометр 09 ИОС - 10 - 005 Оже-локальностью в растровом режиме 10 мкм.

На (рис. 7) показан оже-спектр загрязненной поверхности GaAs из кото­рого видно, что наряду с основными спектрами GaAs, в пленке присутствуют примесные атомы S, О и С. Регистрируя значения энергий оже-электронов, эмитируемыми атомами при их возбуждении и сравнивая эти значения с табу­лированными, определяют химическую природу атомов, из которых эти элект­роны были эмитированы.

Рисунок 7 – Оже-спектр загрязненной поверхности GaAs

Примечание: метод получил свое название по имени французского физика Пьера Оже, который в 1925 г. открыл эффект испускания электронов атомами вещества в результате возбуждения их внут­реннего уровня рентгеновскими квантами. Эти электроны получили название оже-электронов.

Эмиссионная электронная микроскопия (ЭЭМ).

При специальных условиях поверхность образца может испускать электро­ны, т.е. являться катодом: при приложении сильного электрического поля к поверхности (автоэлектронная эмиссия) или под действием бомбардировки по­верхности частицами.

В эмиссионном микроскопе показанном на рис. 8, поверхность образца является электродом системы, образующей с анодом электронную линзу.

Применение ЭЭМ возможно для материалов, которые имеют малую работу выхода. Исследуемое изделие является как бы составной частью электронно-оптической системы ЭЭМ, и в этом его принципиальное отличие от РЭМ.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее