62875 (Пространственно-временная и поляризационная структура сигналов. Характеристика временной структуры сигналов)

2016-07-31СтудИзба

Описание файла

Документ из архива "Пространственно-временная и поляризационная структура сигналов. Характеристика временной структуры сигналов", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "62875"

Текст из документа "62875"

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

РЕФЕРАТ

На тему:

«Пространственно-временная и поляризационная структура сигналов. Характеристика временной структуры сигналов»

МИНСК, 2008

Сигналы в системах (зондирующий, сигнал подсвета, запросный, ответный, собственное радиоизлучение объекта наблюдения, отраженный сигнал и т.п.) являются электромагнитными полями, которые характеризуются временной и пространственной структурой. Кроме того, электромагнитное поле, являясь векторным, в отличие, например, от скалярного акустического поля, характеризуется еще и поляризационной структурой. Следовательно, модель сигнала должна отражать его временную, пространственную и поляризационную структуру:

Здесь - вектор напряженности электрического (магнитного) поля, в общем случае эллиптически поляризованного (рис. 1.1), который может быть разложен на две ортогонально поляризованные составляющие, каждая из которых характеризуется своей амплитудой и фазой:

где - поляризационный базис - пара ортонормированных векторов и единичной длины,

Е1 , Е2 - комплексные числа (координаты) вектора в базисе являющиеся проекциями вектора на направления ортов и соответственно:

Обычно применяемые разложения в базисе из двух линейно поляризованных компонент или двух поляризованных по кругу компонент являются лишь частными случаями.

Меняя амплитуды и фазы (управляя амплитудами и фазами) ортогонально поляризованных колебаний (волн) с линейной поляризацией, получаемых, например, с помощью горизонтально и вертикально расположенных вибраторов, или с круговой поляризацией, получаемых, например, с помощью спиральных излучателей с правозаходной или левозаходной спиралью, можно формировать необходимую поляризационную структуру излучаемого сигнала и управлять ею.

Рис.1. Годограф – траектория, описываемая концом вращающегося с угловой скоростью 0 вектора напряжённости электрического (магнитного) поля эллиптически поляризованной волны.

Рис.2. Поляризационная структура электромагнитного поля при случайных коррелированных комплексных амплитудах ортогонально поляризованных составляющих.

Рис.3. Поляризационная структура электромагнитного поля при независимых комплексных амплитудах ортогонально поляризованных составляющих.

В общем случае комплексные амплитуда ортогонально поляризованных колебаний (Е1, Е2) могут быть функциями времени, в том числе случайными. При этом поляризационный эллипс (его форма и ориентация) меняется во времени. При случайном характере комплексных амплитуд поляризационный эллипс размывается, причем степень его размытости определяется степенью коррелированности случайных амплитуд E1(t) и Е2(t)

При независимых комплексных амплитудах электромагнитная волна становится хаотически поляризованной.

Пространственная структура сигнала описывается амплитудно-фазовым распределением поля на раскрыве антенной системы (передающей или приемной)

где x, у – координаты раскрыва антенны.

Наиболее часто используемыми амплитудными и фазовыми распределениями поля на раскрыве антенны являются:

- амплитудное равномерное распределение (рис. 4)

, ,

где x, y – размеры раскрыва;

- амплитудное колоколообразное (гауссово) распределение (рис. 5)

где Xэф, Yэф – эффективный раскрыв антенны удовлетворяющий условию

- амплитудное косинусоидальное распределение m-й степени (рис. 6)

, , ,

причем




- фазовое равномерное распределение, соответствующе не наклоненному плоскому волновому фронту (рис.7)

, , ;

- фазовое линейное распределение, соответствующее наклоненному плоскому волновому фронту (рис. 8)

,

причем согласно рис. 2.2.8

,

аналогично

;

- фазовое квадратичное распределение, соответствующее сферическому волновому фронту (рис. 9)

,

причем согласно рис.2.2.9

,

аналогично

,

где R – радиус сферического волнового фронта, знак «+/- « соот­ветствует положению сферического фронта относительно раскрыва антенны.

В общем случае амплитудно-фазовое распределение поля на раскрыве антенны может быть не только детерминированным, но и случайным, что подробно будет рассмотрено при изложении вопросов пространственной обработки сигналов.

Временная структура сигнала характеризуется амплитудно-фазовыми законами регулярной U(t) и случайной М(t) модуляции:

Регулярная модель отражает первичную амплитудно-фазовую модуляцию при формировании сигнала, а случайная модель, как правило, отражает вторичную амплитудно-фазовую модуляцию, приобретаемую сигналом в процессе его распространения и отражении:

Будем считать результатом регулярной модуляции периодическую последовательность N одиночных радиосигналов, каждый из которых характеризуется законом модуляции U0(t):

,

причем

где Тп - период следования (повторения) одиночных сигналов,

Е0, - амплитуда, частота, начальная фаза одиночных сигна­лов.

Основные характеристики временной структуры сигналов

Основными характеристиками временной структуры сигналов _А_яя­ются: длительность Т0, мощность Р0, энергия Э0, спектр G(ω), амплитудно-частотный спектр , фазочастотный спектр , корреляционная функция (функция рассогласования) C(τ), время кор­реляции τ0, энергетический спектр S(ω) , ширина спектра ∆f0, функция неопределенности ρ(τ,F), эффективная ширина сечений фун­кции неопределенности ∆τ и ∆f.

Длительность сигнала определяется как основание прямоугольни­_А, площадь которого равна площади под кривой квадрата амплитуд­ного закона модуляции (рис. 10):

, .

Мощность сигнала определяется как усредненная во времени мгно­венная мощность сигнала

.

Условно считаем амплитуду сигнала Ео приведенной к нагрузке в один Ом.

Энергия сигнала определяется как проинтегрированная во време­ни мгновенная мощность сигнала

.

Спектр сигнала характеризует распределение комплексных ампли­туд (амплитуд и фаз) спектральных составляющих по частоте и опре­деляется как прямое преобразование Фурье от сигнала:

где

- спектр закона модуляции сигнала.

Таким образом, спектр сигнала есть смещенный по частоте на величину несущей частоты ω0 спектр закона модуляции сигнала.

Различают амплитудно-частотный спектр сигнала (АЧС)

и фазочастотный спектр сигнала (ФЧС)

Корреляционная функция (функция рассогласования) сигнала есть усредненное во времени произведение двух сигналов, рассовмещенных по времени на величину τ:

где

- корреляционная функция закона модуляции сигнала.

Обратим внимание, что С(0) = 1.

Время корреляции и сигнала определяется как основание прямоу­гольника, площадь которого равна площади правого или левого «крыла» корреляционной функции (рис. 11)

.

Энергетический спектр сигнала характеризует распределение мощности спектральных составлявших по частоте и определяется как прямое преобразование Фурье от корреляционной функции сигнала:

,

где

- энергетический спектр закона модуляции сигнала.

Энергетический спектр пропорционален квадрату амплитудно-час­тотного спектра сигнала

Ширина спектра закона модуляции сигнала определяется как основание прямоугольнике, площадь которого равна площади под кри­вой энергетического спектра при одинаковой высоте и оказывается обратно пропорциональной удвоенному времени корреляции сигнала (рис. 12):

Функция неопределенности (функция Вудворда) сигнала есть квадрат модуля двумерной функции рассогласования С(τ,F) сигнала

,

которая является усредненным по времени произведением двух сигна­лов, рассовмещенных во времени на величину τ и по частоте на величину F:

Функция неопределенности в общем случае представляется поверхно­стью неопределенности (рис. 13).

Обратим внимание, что двумерная функция рассогласования C(τ,F) и функция неопределенности ρ(τ,F) являются нормированными:

, .

Функция неопределенности обладает рядом фундаментальных свойств.

Свойство 1. Сечение функции неопределенности плоскостью F = 0 (вдоль оси τ) есть квадрат модуля функции рассогласования:

Ширина этого сечения (в первой приближении) обратно пропорциональ­на ширине спектра сигнала:

Свойство 2. Сечение функции неопределенности плоскостью τ = 0 (вдоль оси F) есть нормированный энергетический спектр квадрата амплитудного закона модуляции:

Ширина этого сечения обратно пропорциональная длительности сигнала:

Свойство 3. Функция неопределенности обладает свойством центральной симметрии:

Это свойство удобно иллюстрировать, используя диаграмму неопределенности. Диаграммой неопределенности называют сечение поверхности неопределенности горизонтальной плоскостью, параллельной плоскости τ, F, на таком уровне, при котором ширина этого сечения вдоль осей τ и F равна ∆t и ∆F соответственно. Диаграм_А неопределенности, удовлетворяющая свойству № 3, имеет форму эллипса, симметрично расположенного относительно центра (начала координат) (рис. 14).

Свойство 4. Объем тела неопределенности равен единице:

Это свойство (или принцип) неопределенности означает, что никакие способы временной модуляции сигнала не могут изменить объема его тела неопределенности. Они способны лишь перераспределить этот объем над плоскостью (τ,F ). Вудворд это свойство образно характеризовал так : «Тело неопределенности подобно куче пес_А, форму которой можно изменять, но при этом невозможно избавиться даже от одной песчинки».

ЛИТЕРАТУРА

  1. Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006.

  2. Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2008.

  3. Радиотехника и электроника. Межведоств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее