62268 (Від іскри до радіо: історія виникнення радіо)

2016-07-31СтудИзба

Описание файла

Документ из архива "Від іскри до радіо: історія виникнення радіо", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "62268"

Текст из документа "62268"

РЕФЕРАТ

на тему:

"Від іскри до радіо: історія виникнення радіо"

Винайдення радіозв’язку наприкінці ХІХ ст. та впровадження його в життя було здійснено завдяки експериментальним та теоретичним дослідженням переважно європейських фізиків.

Про пріоритет у винайденні радіо чи то росіянином О. Поповим, чи то італійцем Г. Марконі точиться тривала дискусія. Не дивно, що в цій історії, як і взагалі в історії науки і техніки, утвердження пріоритету досить часто пов'язане з питаннями національного престижу. Наприклад, "Большая советская знциклопедия" винахідником радіо називає О. Попова, італійська "Nuova Еnсісlopedia Sonzgno" ― Г. Марконі, однак французька "Larousse universel" ставить Г. Марконі на друге місце після Е. Бранлі, тоді як англійська енциклопедія "Encyclopaedia Britannica" наперед виводить О. Лоджа, а німецький "Lexikon der Deutschen Buchgemeinschaft" батьком радіо називає Г. Герца. При цьому незаперечним залишається твердження про те, що саме німецький фізик Г.Герц у 1887р. своїми дослідами заклав основи бездротового електрозв'язку.

Історія радіо починається від досліджень найвидатнішого експериментатора XIX ст. Фарадея (Michael Faraday, 1791-1867), який дослідним шляхом намагався довести спорідненість світла з електрикою та магнетизмом і в 1851-1855pp. запропонував концепцію електромагнітного (ЕМ) поля. Ідеї Фарадея спонукали професора Лондонського королівського коледжу шотландця Дж.К.Максвелла (James Clark Maxwell, 1831-1879) до створення у 1860-1865 pp. математично оформленої ЕМ-теорії світла, про яку він уперше доповів на засіданні Королівського товариства в рік смерті М. Фарадея. Знамениті рівняння Максвелла показують, що світло ідентичне до ЕМ-хвиль, які є процесом перенесення в просторі енергії зв'язаних між собою змінних електричного й магнітного полів. У справедливості принципово нових фізичних положень про поле, яке випромінюється і поширюється, можна було переконатися тільки дослідним шляхом. Численні та авторитетні опоненти Дж.М.Максвелла критично ставилися до основних положень теорії – до ідеї про спільність властивостей світлових і ЕМ-хвиль та до припущення про існування струмів зміщення. Переконливе підтвердження сталося через 20 років після доповіді Дж.К.Максвелла. Передбачені ним сферичні ЕМ-хвилі були отримані й експериментальне досліджені в німецькому місті Карлсруе молодим професором фізики Г. Герцем (Heinrich Hertz, 1857-1894).

Г. Герц дослідами з іскрою від електричного розряду довів, що ЕМ-хвилі (за тогочасною термінологією – електричні, а пізніше названі "хвилями Герца") мають властивості світлових хвиль. У серії дослідів з параболічною антеною, виконаних у 1888 p., Г.Герц перетворив хвилі зі сферичною хвильовою поверхнею на хвилі з плоским фронтом і, експериментуючи таким чином уже з ЕМ-променем, встановив, що він підлягає законам геометричної оптики. Г.Герц переконався також у здатності ЕМ-хвидь інтерферувати, що дало змогу вимірювати їх довжину.

Досліди Г.Герца були значною мірою виконані під впливом "райхканцлера фізики", як називали в Німеччині професора Г.Гельмгольца (Hermann von Hеlmholtz, 1821-1894). Він сприяв визнанню теорії Максвелла науковцями. Варто зазначити, що саме в лабораторії Гельмгольца і на його пропозицію у 1873-1874 pp. учень "батька російської фізики" О.Г.Столєтова майбутній професор Київського університету М.М.Шіллер розпочав досліди з діелектриками, які дали перше пряме експериментальне підтвердження теорії Максвелла. На ініціативу Г.Гельмгольца, Берлінська академія наук оголосила в 1879р. конкурс з премією за експериментальне підтвердження принципово нової теорії. Г.Гельмгольц звернув увагу свого талановитого учня Г.Герца на це завдання, однак з розрахунків Герца випливало, що він не має змоги виготовити апаратуру з достатньо високою для успішних дослідів частотою коливань джерела ЕМ-хвиль. Лише через 7 років у Карлсруе йому випала така щаслива нагода, і він розпочав свої досліди на частоті 40 МГц.

Джерелом ЕМ-випромінювання в дослідах Г.Герца був іскровий електричний розряд від високовольтної вторинної обмотки індукційної котушки, розробленої німецьким техніком Г.Румкорфом (Heinrich Ruhmkorf, 1803-1877) з вібратором. Ця котушка аналогічна до котушок запалювання в автомобільних двигунах. В електричному колі низьковольтної первинної обмотки котушки був повітряний розрядник, крізь який здійснювався електричний розряд від конденсаторного пристрою типу лейденської банки. З дослідів Феддерсена (Berend Wilhelm Feddersen), виконаних у 1858 p. в німецькому місті Кіль, було відомо, що при іскровому розряді лейденської банки відбуваються періодичні коливання електричного струму. Г.Герц використав те, що розряд конденсатора первинної обмотки ініціював у колі вторинної обмотки між металевими кульками розрядника виникнення іскри, яка, як з'ясувалося, є джерелом ЕМ-хвиль. Приймачем цих хвиль був виток провідника з повітряним проміжком; поява іскри в ньому свідчила про функціонування всієї апаратури – випромінювача і приймача. У результаті вдосконалення апаратури частота хвиль була збільшена від 40 МГц на початку дослідів до 450 МГц.

Досліди Герца були сприйняті як диво і викликали великий інтерес у всьому науковому фізичному світі. Так висловився про них М.Планк (Max Planck, 1858-1947) у некролозі, написаному на прохання Г.Гельмгольца після смерті Г.Герца. Звичайно, у науковців та інженерів виник природний інтерес до значення дослідів Герца для техніки. Однак Г.Герц був перш за все дослідником і, можливо, саме тому не цікавився прикладними питаннями і на перших порах не сподівався на практичне використання свого відкриття. Принаймні на відповідне запитання інженера Г.Губера (Heinrich Huber) у 1889 p. він відповів заперечливо. Низька чутливість і недосконалість приймача, в якому іскру доводилося спостерігати крізь мікроскоп, давали змогу проводити досліди лише в лабораторному приміщенні і обмежували технічне використання апаратури Герца. Тому перед дослідниками насамперед постала проблема збільшення чутливості приймача.

Для практичного використання електромагнітних хвиль у радіозв'язку треба було знайти чутливий до них елемент радіоприймача. Спочатку це був так званий когерер. Історія його розвитку така. У 1838 р. шведський фізик П.Розеншьольд (Peter Samuel Munk of Rosenschold) помітив, що вільно з'єднані між собою дрібні залізні ошурки після опромінення від іскри переходили в стан підвищеної електропровідності, а після механічного струшування поверталися в попередній стан низької електропровідності. Таку різку зміну електропровідності залізного порошку можна було багаторазово повторювати. Значно пізніше про вплив блискавки на поведінку залізних ошурок повідомив у 1884 р. італійський учитель Кальцеккі-Онесті (Temistocle Calzecchi-Onesti), саме він і сконструював макетний зразок майбутнього когерера, як його назвав у 1894 р. О.Лодж (Sir Oliver Joseph Lodge, 1851-1940). Французький фізик Е.Бранлі (Eduard Branly, 1846-1940), фахівець з електрофізики і скрупульозний експериментатор, зумів у 1890р. перевести залізні ошурки у стан високої електропровідності дією на них іскри крізь непрозору перепону (крізь стіну із сусідньої кімнати). Пристрій з такими порошками Е.Бранлі називав "електропровідником", дещо пізніше його стали називати "фріттером" і остаточно за ним закріпилася назва "когерер".

Когерер — це скляна трубка з ошурками всередині між двома електродами. Г.Марконі (Guglielmo Marconi, 1874-1937) після декількох сотень спроб розробив свій оптимальний варіант когерера. Його когерер був завдовжки 50 мм, зазор між трохи скошеними поверхнями срібних електродів, які дотикалися до порошку, становив 0,635 мм. Електроди були оброблені ртуттю, а порошок складався на 95 % з порошинок нікелю і на 5 % — зі срібла.

Пошуки чутливого приймача проводилися не лише в напрямку використання когерера. Наприклад, у Великобританії професор музики Хюз (D. Е. Hughes, 1831-1900) помітив, що іскра викликає електричний струм у телефонному приймачі. Він продемонстрував відкрите ним явище президенту Королівського товариства Споттісвуду (William Spottiswood) та відомому фізику Дж.К.Стоксу (Sir Georg Gabriel Stokes), передаючи та приймаючи при цьому сигнали віл іскри на відстанях від 55 до 460 м. На це Дж.К.Стокс зауважив, що всі ці результати можуть бути пояснені ЕМ-явищами, і він не приймає припущення про існування електричних хвиль. Хюз був настільки пригнічений цією критикою, що відмовився описати в пресі свої результати доти, доки не знайде незаперечного підтвердження. Проте він фактично припинив свої дослідження, а замітка про його збентеження з'явилася в 1899 р. в його листі до Фегі (J. J. Fahie). При глибшій обізнаності Хюза з фізикою та твердішому характері й наполегливості його прізвищем могла б відкриватися історія сучасного радіо. У 1892р. інший англійський фізик У.Крукс (William Crooks), знаючи результати робіт численних дослідників, які вивчали властивості хвиль Герца, надрукував у науковому журналі прогноз: ЕМ-хвилі дають дивну можливість створити бездротовий телеграф, бо для цих хвиль такі середовища, як мури чи лондонський туман, є прозорими.

Великий вплив на сучасників справили дослідження та опубліковані в 1894 р. лекції ліверпульського професора фізики О.Лоджа, який для початку відтворив досліди Герца, продемонструвавши їх публічно. Він увів до приймача (для підвищення його чутливості) когерер, вмонтувавши його в коло послідовно з електричною батареєю та електричним дзвоником, який сигналізував про прийом. О.Лоджу 1890р. використав також резонансний контур, чим забезпечувалася налаштованість приймача на бажану частоту. Хоча О.Лодж своєчасно не захопився проблемами зв'язку, проте під його впливом британський морський офіцер Г.Джексон (Henry Bradwardine Jackson, 1855-1929) упродовж 1895-1896 pp. виконував таємні досліди з налагодження радіотелеграфного зв'язку між військовими кораблями. Пізніше стало відомо, що випромінювач і приймач Джексона були схожими на апаратуру Марконі. Зміст лекцій О.Лоджа був відомий італійському професору А. Рігі (Augusto Righi, I850-1920), який також експериментував з хвилями Герца, і зацікавив ними свого студента Г. Марконі та О. Попова. Не дивно, що в апаратурному плані установки цих піонерів радіозв'язку були дещо подібними між собою, бо свої дослідження вони мусили, як то заведено в експериментаторів, починати з відтворення дослідів Герца.

А. Рігі був одним із перших, хто почав досліджувати ЕМ-хвилі відразу після публікацій Г. Герца. Він зумів отримати короткі хвилі довжиною 2,6 см, а для їх приймання прошкрябав станіолеве покриття дзеркала і у зробленій таким чином щілині спостерігав за допомогою лупи появу іскор. У Болоньї лекції А. Рігі відвідував юний Г. Марконі, що стало поштовхом для його дослідів з радіозв'язку. Г. Марконі поставив собі за мету передавати за допомогою ЕМ-хвиль інформацію на далекі відстані і досяг у цьому грандіозного успіху.

Як бачимо, науковці різних країн майже одночасно наблизилися до встановлення бездротового електрозв'язку через повітря. Видатних успіхів у справі виникнення і впровадження радіозв'язку в Росії досяг Олександр Степанович Попов (4.03.(16.03.)1859 – 31.12.1905(13.1.1906). У військово-морському офіцерському училищі в Кронштадті, де він працював, О. Попов мав можливість користуватися багатою бібліотекою, в якій ознайомився з публікаціями Г. Герца і О. Лоджа. Вони стимулювали його до продуктивної й оригінальної праці з прийому ЕМ-хвиль.

У 1895 р. О. Попов спочатку відтворив досліди Герца. Потім він розробив приймач з когерером та антеною. Цей перший приймач Попова реагував на розряд блискавки, і тому був названий грозовідмітником, його було встановлено на метеорологічній станції Лісного інституту. Про зміст і наслідки своєї роботи О. Попов доповів 7.05. (25.04 за старим стилем) 1895 р. на засіданні фізичного відділення Російського фізико-хімічного товариства (РФХТ) у С.-Петербурзі. На цьому засіданні О. Попов здійснив сеанс радіозв'язку з передачею коротких і тривалих сигналів. Його приймач з антеною у вигляді вертикальної дротини завдовжки 2,5 м приймав сигнали на відстані 64 м від генератора Герца, про що сповіщав електричний дзвоник. При надходженні сигналу до приймача активно спрацьовував електричний дзвоник, з'єднавшись з електричним реле в колі когерера: било дзвоника ударяло по його чашці, і таким чином повідомлялося про надходження сигналу, а при зворотньому ході било струшувало когерер, і в такий спосіб забезпечувалася готовність кола до приймання наступного сигналу. Передатчик був виготовлений на базі вібратора Герца з індукційною котушкою та іскровим розрядником у посудині з маслом і з антеною у вигляді двох бляшаних квадратних листів зі стороною 40 см. Робота апаратури і відтворюваність результатів були неодноразово перевірені й підтверджені О. Поповим навесні 1895 р.

П'ятидесятилітній ювілей доповіді О. Попова як історичної події великої ваги урочисто відзначався 7.05.1945 р. у Москві за участю дочки О. Попова та партійно-державної, військової та наукової еліти СРСР. На цьому зібранні професора О.Попова було проголошено винахідником радіо та запропоновано святкувати в СРСР 7 травня День радіо.

До 100-літнього ювілею доповіді О.Попова 5 – 7.05.1995 р. у Москві під егідою ЮНЕСКО було проведено міжнародну конференцію. На ній з доповіддю виступив президент Російського науково-технічного товариства радіо та електрозв'язку ім. О.С. Попова академік Ю. В. Гуляєв. Він виклав історію винайдення радіо. Відмітивши роль попередників О. С. Попова (М. Фарадея, Дж. Максвелла, Г. Герца, Е. Бранлі, О. Лоджа), а також його послідовників, найбільш знаменитим з-поміж яких був Г. Марконі, доповідач наголосив на ключовій ролі самого О. С. Попова.

Зміст свого винаходу О. Попов детально виклав у статті для січневого номера "Журнала русского физико-химического общества" (ЖРФХО, 1896), а також у журналах "Электричество" (1896, № 13-14) і "Метеорологический вестник" (1896, № 3). У першій статті О. Попов зазначив, що її зміст був предметом його квітневої доповіді.

О. Попов поставив завдання збільшити відстань ефективної радіопередачі. Впродовж року він підвищив потужність передавача і на його виході встановив, як це він практикував і раніше, вертикальну антену. О. Попов здійснив також сотні дослідів для поліпшення когерера і встановив апарат Морзе для фіксації прийнятих сигналів на паперовій стрічці. Удосконалену таким чином систему для телеграфу без дротів О. Попов продемонстрував на засіданні Фізичної секції РФХТ 12.(24.)03.1896р. Цього разу він здійснив передачу та прийом на відстані 250 м першої в світі радіограми. Подробиці цієї видатної події описано 1925 р. у спогадах учасників засідання професорів О. Д. Хвольсона ( 1852-1934) і В. К. Лебединського (1868-1937). За спогадами, радіограму зчитав з телеграфної стрічки голова засідання професор Ф. Ф. Петрушевський і написав крейдою на дошці слова "Hеinrich Hertz".

На жаль, про зміст публічних виступів О. Попова не залишилося задокументованих подробиць. Деякі дослідники намагалися пояснити це тим, що О.Попов працював у військовому відомстві, і на його виступи накладалися певні режимні обмеження. Однак О. Попов публікував свої результати у відкритій пресі, інформація про них з'являлася і в різних зарубіжних журналах, він захищав свій пріоритет і публікацією статті в грудневому числі журналу "The Electrician". Перше друковане повідомлення про винахід О. Попова з'явилось 25.04 (7.05.) 1895 р. в газеті "Кронштадтский вестник" через 5 днів після його першого виступу. Суть свого винаходу О. Попов виклав у статті "Прибор для обнаружения и регистрирования электрических колебаний", опублікованій у журналі ЖРФХО (1896p., Т. 28, С. 14). У цій статті список використаної О. Поповим літератури відкривається посиланням на публікації О. Лоджа. Статтю О. Попов завершив запевненням, що його прилад може бути використаний для передачі сигналів на відстані за допомогою швидких електричних коливань, як тільки буде знайдене джерело таких коливань з достатньою енергією. У цей же час О. Попов захопився експериментальним дослідженням рентгенівських променів, до яких була прикута увага фізиків світу.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее