referat (Солнечный ветер, особенности межпланетного пространства (Солнце – Планеты)), страница 4

2016-07-31СтудИзба

Описание файла

Документ из архива "Солнечный ветер, особенности межпланетного пространства (Солнце – Планеты)", который расположен в категории "". Всё это находится в предмете "астрономия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "астрономия" в общих файлах.

Онлайн просмотр документа "referat"

Текст 4 страницы из документа "referat"

Предположение о том, что скорость ионов равна скорости нейтралов, оправданно тем, что поток нейтралов, испаряющихся с поверхности кометы, настолько велик, что он увлекает за собой существенно меньший поток ионов вследствие процессов столкновений. Постоянство же скорости принимается вследствие сверхзвукового расширения газа (при достаточно больших сверхзвуковых скоростях единственная сила, действующая на газ, а именно градиент давления, не является существенной). Здесь следует заметить, что при расширении газ становится все более и более разреженным. Это приводит к тому, что на некотором расстоянии от ядра, определяемом формулой

(5)

-17-

процессы столкновений между ионами и молекулами становятся несущественными и они ведут себя как невзаимодействующие газы. Этот факт очень важен для построения модели взаимодействия кометных атмосфер с солнечным ветром.

2.3.4. Взаимодействие кометных ионосфер с солнечным ветром

Солнечный ветер представляет собой сверхзвуковой поток полностью ионизованного водорода, летящего от Солнца в среднем со скоростью 400 км/с и температурой в десятки тысяч градусов. В районе орбиты Земли концентрация протонов солнечного ветра равна примерно 10 см-3. Для потока солнечного ветра развитая кометная атмосфера является препятствием, которое вызывает в нем существенные возмущения.

Интересно, что нейтральная и ионизованная компоненты кометного газа по-разному воздействуют на солнечный ветер, о чем уже было упомянуто в 2.3.2. Взаимодействие потока кометных ионов с солнечным ветром происходит в соответствии с взаимодействием двух сплошных сред, то есть такое взаимодействие можно описать в рамках гидродинамических уравнений Эйлера [4]),. В результате образуется картина течения, изображенная на рис. 4. На этом рисунке обозначено: BS - головная ударная волна, через которую солнечный ветер тормозится от сверхзвуковой скорости к дозвуковой вследствие его торможения на кометном газе, а IS - внутренняя ударная волна, на которой сверхзвуковой поток кометных ионов (см. 2.3.3) тормозится до дозвуковых скоростей как следствие их замедления потоком солнечного ветра. Солнечный ветер отделяется от потока кометных ионов тангенциальным (иногда его называют контактным) разрывом, обозначенным на рис. 4 через CD. Следует заметить, что разрывы BS, IS и CD образуются только при взаимодействии сред, которые можно считать сплошными. Через контактный разрыв не могут просачиваться ни кометные ионы и электроны в солнечный ветер, ни протоны и электроны солнечного ветра в кометную ионосферу. На рис. 4 этот факт отображается тем, что линии тока солнечного ветра и кометных ионов нарисованы отклоненными этим разрывом, становясь параллельными его поверхности. С математической точки зрения на контактной поверхности выполняются условия равенства нулю нормальных компонент скорости и равенство давлений обеих ионизованных сред. Для определения формы и кометоцентрического расстояния до поверхности CD необходимо упрощенное модельное представление, рассмотренное в 2.3.3.

-18-

Рис. 4.Качественная картина обтекания кометной атмосферы солнечным ветром. BS - головная ударная волна, образованная в солнечном ветре, IS - внутренняя ударная волна, образованная в вытекающем газе ионов кометного происхождения, CD - контактная поверхность, отделяющая газ кометных ионов от потока солнечного ветра. Штриховые линии показывают траектории нейтральных частиц кометного происхождения, Rc - расстояние от кометного ядра, начиная с которого нейтральные молекулы кометы становятся независимыми от ионов

Какова же роль нейтральных молекул, вытекающих из кометного ядра, в проблеме взаимодействия солнечного ветра с кометными атмосферами? Как уже было упомянуто в 2.3.3, нейтральные молекулы имеют длину свободного пробега много больше длины свободного пробега ионов при их взаимодействии с солнечным ветром. При этом кометные нейтралы могут свободно проникать в солнечный ветер через контактную поверхность CD. Поток нейтральных молекул нельзя считать сплошной средой. На всей трассе их продвижения в солнечный ветер они фотоионизуются солнечной радиацией. Их фотоионизация в области вне контактного разрыва CD приводит к тому, что вновь образовавшиеся ионы захватываются солнечным ветром, приводя к изменению массы, импульса и энергии последнего. Такой процесс получил название "нагружение" солнечного ветра (это название закрепилось в связи с тем, что масса кометного иона существенно превосходит массу протона). Таким образом, солнечный ветер вблизи кометы представляет собой электронно-протонный газ (или, согласно принятой в физике терминологии, полностью ионизованную водородную плазму), который загрязнен кометными ионами.

-19-

В результате взаимодействие солнечного ветра с кометной атмосферой можно представить как гидродинамическое взаимодействие сверхзвукового источника ионов (комета) с поступательным сверхзвуковым потоком загрязненного кометными ионами солнечного ветра. Такой сценарий рассматриваемого физического процесса предложен в классической работе Бирмана, Бросовского и Шмидта [3].

2.3.5. Что предсказала теория перед полетами космических аппаратов к комете Галлея в марте 1986 года

Ученые, занимавшиеся изучением комет, с нетерпением ждали очередного появления вблизи Земли кометы Галлея в марте 1986 года (в последний раз ее наибольшее сближение с нашей планетой произошло в 1910 году). Это ожидание объяснялось еще и тем, что появилась возможность исследования кометы при помощи космических аппаратов, которые должны были пройти в непосредственной близости от нее и провести прямые измерения в ее окрестности, поскольку наземными средствами невозможно наблюдать возмущения, которые вносит кометная атмосфера в компоненты солнечного ветра, так же как и возмущения, вносимые солнечным ветром в вытекающую кометную атмосферу.

Отсутствие экспериментальных данных по рассматриваемой проблеме привело к тому, что перед запуском космических аппаратов к комете Галлея в марте 1986 года центр тяжести теоретических исследований по обтеканию кометных атмосфер солнечным ветром лежал в области предсказаний тех физических процессов, которые должны были обнаружить приборы при приближении к комете

Какие же явления предсказывала теория? Как было рассказано в 2.3.3, теоретические расчеты показали, что при обтекании кометы Галлея солнечным ветром должны образоваться головная ударная волна BS, контактный разрыв CD и внутренняя ударная волна IS (см. рис. 4). При этом солнечный ветер должен тормозиться задолго до ударной волны BS (область IV на рис. 4) вследствие его нагружения ионами кометного происхождения (см. 2.3.4), а кометоцентрическое расстояние BS на 2-3 порядка величины может превосходить такое же расстояние до контактного разрыва CD. В области III (см. рис. 4) загрязненный солнечный ветер достаточно резко разогревается и замедляется при переходе через головную ударную волну BS.

Если бы подтверждалась гипотеза о сверхзвуковом истечении кометного газа с поверхности ядра, то должна образоваться также ударная волна IS в потоке кометных ионов. До этой ударной волны (в области I на рис. 4) сверхзвуковой поток кометного газа не чувствует присутствия солнечного ветра (наличие границы CD чувствует только дозвуковая область II на рис. 4). Количественные оценки реальных расстояний до поверхностей BS, CD и IS в сильной степени зависят от параметра G, характеризующего количество молекул, покидающих кометное ядро в единицу времени. Этот параметр определяется формулой

(6)

Из теории было также ясно, что головная ударная волна возникает не как следствие обтекания сверхзвуковым потоком какого-либо препятствия (например, крыла сверхзвукового самолета или границы раздела двух взаимодействующих сплошных сред CD, как на рис. 4), а как результат торможения солнечного ветра до дозвуковых скоростей вследствие захвата вновь образовавшихся кометных ионов. Из теоретических расчетов и оценок величины G ~ 1030 с-1 для кометы Галлея

-20-

следовало, что головная ударная волна BS находится на расстоянии порядка 106 км от поверхности ядра, а контактный разрыв CD - на расстоянии порядка 104 км.

На рис. 5 изображены траектории космических аппаратов "Вега-1", "Вега-2", "Джотто", "Суиссеи" и "Сакигаке", пролетавших около кометы Галлея в марте 1986 года. Интересно, что все аппараты пролетали c подветренной стороны (со стороны набегающего на комету солнечного ветра), которая наиболее хорошо поддается теоретическим расчетам. Как видно на рис. 5, наиболее близко к комете пролетел аппарат "Джотто" (расстояние его наибольшего сближения с кометой было около 600 км), и он, очевидно, пересек как головную ударную волну, так и контактный разрыв. Максимальное же сближение аппаратов "Вега" составляло примерно 8-9 тыс. км, и они хотя и пересекли головную ударную волну, но не заметили пересечения контактного разрыва. Аппарат "Суиссеи" пересекал только головную ударную волну, поскольку расстояние его максимального сближения с кометой Галлея было примерно 150 тыс. км.

Рис. 5. Траектории космических аппаратов, которые исследовали комету Галлея в марте 1986 года. CD - поверхность, изображенная на рис. 4.

На рис. 6 сравниваются данные теоретической модели по положению и форме головной ударной волны BS для разных значений параметров, определяющих состояние невозмущенного солнечного ветра во время пересечения головной ударной волны аппаратами "Суиссеи", "Вега-1" и "Вега-2" (соответственно 3, 6 и 9 марта) и "Джотто" (14 марта). Видно очень хорошее совпадение предсказаний теории и эксперимента.

-21-

Рис. 6. Теоретические положения головной ударной волны BS в марте 1986 года: 6 марта в момент прохождения мимо кометы Галлея аппаратов "Вега" и "Суиссеи" (кривая 1) и 14 марта во время прохождения мимо кометы Галлея аппарата "Джотто" (кривая 2 ). На траекториях соответствующих космических аппаратов отмечены моменты регистрации BS установленными на них приборами

На рис. 7 экспериментальное распределение скорости солнечного ветра вдоль траектории "Суиссеи" сравнивается с данными теории (сплошная кривая). Получено также очень хорошее совпадение. Даже скачок скорости в головной ударной волне (как видно на рис. 7, этот скачок был зафиксирован аппаратом примерно в 15h UT) совпал по величине и положению на выходной части траектории "Суиссеи" (на входном участке прибор, измерявший скорость, не работал).

-22-

Рис. 7. Теоретическое (сплошная линия) и экспериментально измеренное 8 марта 1986 года вдоль траектории "Суиссеи" (точки) изменение скорости солнечного ветра (UT - всемирное время)

Не все сравнения приводят к хорошему совпадению. Наибольший интерес представляют несовпадения, поскольку именно они стимулируют теоретиков уточнять модельные представления о физике происходящих около комет явлений. Так, например, такое несовпадение имеет место по положению контактного разрыва CD (в теории он находится от кометы раза в полтора дальше, чем в эксперименте). Это расхождение можно, например, объяснить влиянием межпланетного магнитного поля. Кроме того, ученые, приборы которых стояли на наиболее приблизившемся к комете Галлея аппарате "Джотто", утверждают, что они не обнаружили внутренней ударной волны IS.

Несмотря на имеющиеся количественные расхождения между теорией и экспериментом, можно твердо утверждать, что теоретические представления о характере взаимодействия солнечного ветра с кометными атмосферами были в основном правильными, что и доказали экспериментальные данные, полученные при помощи космических аппаратов в марте 1986 года. Интересно, что данные по положению ударной волны около кометы Григга-Шеллерупа, полученные аппаратом "Джотто" 10 июля 1992 года (вторая комета, с которой встретился аппарат после встречи с кометой Галлея), были использованы затем, чтобы оценить плохо измеряемый в эксперименте параметр, а именно количество молекул, покидающих ее поверхность в единицу времени. Этот параметр определяется формулой (6).

Надо отметить, что взаимодействие солнечного ветра с кометной атмосферой приводит к тому, что кометные ионы, образовавшиеся в областях I и II, отклоняются в хвост кометы. Однако такие ионы составляют лишь незначительную часть кометного хвоста. Мощный хвост у активных комет, который часто видим и невооруженным глазом, создается в основном отклонением кометных молекул во всех областях I-IV радиационным давлением солнечного излучения.[1]

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5192
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее