122779 (Автоматизация известково-обжиговой печи), страница 3

2016-07-31СтудИзба

Описание файла

Документ из архива "Автоматизация известково-обжиговой печи", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "122779"

Текст 3 страницы из документа "122779"

Все управляющие воздействия можно разделить на две группы: статические и динамические. В соответствии с этим и управление можно разделить на статическое и динамическое. Статическое управление сводится к нахождению оптимального объема природного газа, продувочного воздуха и фракционного состава известняка, обеспечивающих получение конечных параметров извести как можно ближе к заданным. С этими целями строятся статические модели обжига извести, которые реализуются на ЭВМ и микроконтроллерах. Динамическое управление в отличии от статического предусматривает определение оптимальных значений управляющих воздействий, являющихся функциями времени продувки. Оно реализуется на основе измерений динамических параметров процесса. К динамическим управляющим воздействиям относятся параметры;

1) расход природного газа;

2) расход продувочного воздуха.

Основной задачей для реализации динамического регулирования является непосредственное измерение параметров процесса - температуры и состава извести. Однако недоступность печи для прямых измерений практически исключает это. Что касается определения химического состава извести, то здесь наиболее перспективно использование косвенных параметров, доступных измерению и несущих в себе необходимую информацию.

Также, в задачу управления входит контроль ряда параметров:

Таблица 1.

Контролируемый параметр

Способ выражения физической величины контролируемого параметра (А) в единицах СИ

Заданное значение

Предельные значения

Допуск заданный

Температура в соединительном канале печи, С°

950-1200

750-1350

±200

Давление в соединительном канале печи, кПа

10-30

8-38

±3

Температура извести из шахт № 1 ,№2, °С

100

120

±10

Температура отходящих газов извести из шахт №1,№2,С°

120

200

±10

Давление верхнего воздуха (на горение), кПа

25

8-38

±5

Давление нижнего воздуха (на охлаждение), кПа

24

8-30

±5

Давление воздуха на продувку , кПа

50-70

30-90

±5

Расход верхнего воздуха (на горение), м /час

32000

20000 -40000

±2000

Расход нижнего воздуха (на охлаждение), м."7час

15000

10000-22000

±2000

Температура природного газа на печь, °С

20

-10-40

Расход природного газа на печь, Нм /час

2200

1600-2400

±30

2. Построение функциональной схемы автоматизации и выбор технических средств

  • Система управления обжигом в печах ИОЦ представляет собой комплекс технических средств, обеспечивающих следующие функции;

  • обеспечение работы печи и ее механизмов в точном соответствии с требованиями технологии в автоматическом режиме;

  • предупреждение и диагностирование аварийных ситуаций, что обеспечивает безопасность труда и целостность оборудования цеха;

  • визуальное отображение хода технологического процесса и работы печи на экране компьютера оператора;

  • запись и архивирование данных об основных параметрах технологического процесса в базе данных компьютера.

Автоматизированная система управления технологией производства (в дальнейшем АСУТП) известково-обжигательной печи состоит из трёх уровней.

Первый уровень: комплекс средств, для получения данных о технологическом процессе и его параметрах.

Этот уровень включает в себя датчики, осуществляющие сбор информации о температуре, давлении, расходе, положения механизмов и других параметров техпроцесса.

Второй уровень: программируемый логический контроллер "SIМАТIС" 87-300 фирмы SIЕМЕМ5.

Данный контроллер, получив информацию с первого и с третьего уровней, осуществляет управление технологическим процессом по программе, загруженной в него с помощью программирующего устройства — программатора. Управление осуществляется путем подачи команд на исполнительные механизмы.

Третий уровень: комплекс средств, для отображения технологического процесса, а также для передачи параметров управления в контроллер.

Этот уровень выполнен на базе современных персональных компьютеров промышленного исполнения фирмы Advantech, оснащенных специальными платами — коммуникационными процессорами для связи с контроллерами через шину PROFIBUS. По существу эти компьютеры представляют собой собственно рабочее место обжигальщика. Через эти компьютеры осуществляется задание параметров и режимов работы печи, а также осуществляется управление печью в ручном режиме в случае возникновения внештатных ситуаций. Программным обеспечением на этом уровне является система визуализации In Touch7.1 американской фирмы Wonder Ware.

В соответствии с поставленными задачами нам необходимо разработать контуры контроля - основных технологических параметров (табл. 1) и управления подачей топливного газа в печь. Следовательно, можно синтезировать следующие контуры контроля и управления (приложение Б):

1. Контур контроля и регистрации температуры в переходном канале. В нем используются первичный датчик - пирометр радиационного излучения Ardometr М250АЗ, в комплекте с преобразователем сигнала - линеаризатором М5533, самопишущий прибор Zерагех 49 с унифицированным входным сигналом 4-20 mА, сигнал с которого поступает в микроконтроллер.

2. Контур контроля давления продувочного воздуха. В нем используется датчик давления ипргезн 62 с унифицированным входным сигналом 4-20 mА, сигнал с которого поступает в микроконтроллер.

3. Контур контроля и регистрации давления в соединительном канале. Состоит из датчика давления Impress 62 и самопишущего прибора Zераrех 49 с унифицированным входным сигналом 4-20 mА, сигнал с которого поступает в микроконтроллер.

4. Контур контроля расхода воздуха на горение (верхний воздух). Построен на основе скоростного расходомера (группа - гидродинамических трубок) - измерительный зонд М08-023-892-5-НР, в комплекте с преобразователем перепада давления INDIF 51, выходной сигнал 4-20 mА. Сигнал с INDIF 51 поступает в корнеизвлекающий преобразователь INМАТ выходной сигнал 0-20 mА, далее сигнал поступает в микроконтроллер.

5. Контур контроля давления воздуха на горение (верхний воздух). В нём используется первичный датчик давления Impres 62 с унифицированным входным сигналом 4-20 mA, сигнал с которого поступает в микроконтроллер.

6. Контур контроля расхода воздуха на охлаждение (нижний воздух). Построен на основе скоростного расходомера (группа - гидродинамических трубок) - измерительный зонд МОЗ-023-622-5-НР в комплекте с преобразователем перепада давления INDIF51 , выходной сигнал 4-20 mА. Сигнал с INDIF51 поступает в корнеизвлекающий преобразователь INМАТ , выходной сигнал 0-20 mА, далее сигнал поступает в микроконтроллер.

7. Контур контроля давления воздуха на охлаждение (нижний воздух). В нём используется первичный датчик давления Impress 62 с унифицированным входным сигналом 4-20 mА, сигнал с которого поступает в микроконтроллер.

8. Контур контроля и регистрации температуры извести из шахты. Используется термометр сопротивления ТСП-Рt100, вторичный нормирующий преобразовательINPAL, с выходным сигналом 4-20 mА, и регистрирующий прибор Zераrех 49 с унифицированным входным сигналом 4-20 mА, сигнал с которого поступает в микроконтроллер.

9. Контур контроля температуры отходящих газов из шахты. Используется термометр сопротивления ТСП-Рt100 и вторичный нормирующий преобразователь INPAL с унифицированным входным сигналом 4-20 mА, сигнал с которого поступает в микроконтроллер.

10. Контур контроля температуры природного газа. Используется термометр сопротивления ТСМ-50M, вторичный нормирующий преобразователь INPAL, с выходным сигналом 4-20 mА, и показывающий (стрелочный) прибор Indicomp 2 с унифицированным входным сигналом 4-20 mА, сигнал с которого поступает в микроконтроллер.

11. Контур контроля и регулирования расхода топлива (природный газ). Состоит из турбинного газового счётчика «Rombach» Т2-150-О1000, механически связанного с преобразователем (частота/ток) WЕ-77/ЕХ-UТ (поз. 11-2), с дискретным выходным сигналом. Сигнал с преобразователя поступает в микроконтроллер, где текущая частота импульсов преобразуется в текущий расход газа, после чего данные передаются на пульт в ЭВМ, откуда они поступают в следующий микроконтроллер, где расход преобразуется в токовый сигнал и поступает на регистрирующий прибор Zерагех 49 с унифицированным входным сигналом 4-20 mА. В том же микроконтроллере генерируется сигнал на открытие или закрытие регулирующего органа. Данный сигнал поступает на пускатель сервопривода АUМА 8А-07.1, который открывает или закрывает регулирующий орган.

3. Построение принципиальной схемы контура контроля

Принципиальные электрические схемы в проектах автоматизации служат для изображения взаимной электрической связи аппаратов и устройств, действия которых обеспечивают решение задач автоматического контроля, регулирования, сигнализации и управления технологическим процессом. Эти схемы являются важными проектными материалами, которые используются не только в процессе проектирования, но и в процессе наладки и эксплуатации технологической установки.

В качестве рассмотрения выбран контур контроля температуры в соединительном канале печи. Принципиальная электрическая схема контура приведена в графической части проекта.

Данный контур решает одну из основных задач, относящуюся к тепловому режиму работы печи, а именно поддержание оптимальной температуры в рабочем пространстве печи. На работу данного контура имеют прямое влияние такие параметры, как:

- химический состав известняка ;

- фракция известняка;

- уровень известняка в печи;

- температура известняка;

В свою очередь, рассматриваемый контур влияет на работу других контуров и на работу всего агрегата в целом.

Поэтому, разработке и анализу режимов работы в различных внештатных ситуациях принципиальной электрической схемы контура контроля температуры в соединительном канале печи следует уделить особое внимание.

В контуре используются следующие технические средства автоматизации:

Радиационный пирометр Ardometer

М - 250 А 3

700-1350°С 0,9-15тУ

Линеаризатор

М-55332

4-20 мА.

Вторичный одноканальный самописец

Zeparex 49

700 -1350 "С 4 - 20 мА

канал АЦП контроллера

87-300

700 - 1 350°С 4-20мА

Радиационный пирометр Ardometr преобразует параметр температуры в термо ЭДС. Сигнал с пирометра поступает на линеарезатор, который линеаризирует этот сигнал и преобразует его в токовый (4-20мА). Токовый сигнал с выхода линеарезатора последовательно поступает на показывающий прибор Zeparex 49

и на вход канал АЦП контроллера 37-300.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее