109026 (Применение метода частотных круговых диаграмм)

2016-07-31СтудИзба

Описание файла

Документ из архива "Применение метода частотных круговых диаграмм", который расположен в категории "". Всё это находится в предмете "наука и техника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "наука и техника" в общих файлах.

Онлайн просмотр документа "109026"

Текст из документа "109026"

Московский Государственный Технический Университет им. Н.Э. Баумана

Курсовая работа по курсу “Нелинейные САУ”

на

тему:

Применение метода частотных круговых диаграмм к исследованию устойчивости систем с логическими алгоритмами управления.

Выполнил: ст-т гр. АК4-81

Смык В.Л.

Руководитель: профессор

Хабаров В.С.

Реутов 1997 г.

Применение метода частотных круговых диаграмм к исследованию устойчивости систем с логическими алгоритмами управления.

На ранней стадии развития теории автоматического регулирования требование устойчивости работы системы было первым и обычно единственным и содержание большинства теоретических исследований сводилось к иследованию устойчивости.

“Термин “устойчивость” настолько выразителен, что он сам за себя говорит”,-отмечают в начале изложения теории устойчивости Ж. Ла Салль и С. Лефшец [1]. Это вполне справедливо, но, несмотря на это, неточности и нелогичности можно встретить как раз не в математических, а в смысловых понятиях и терминах.

Устойчивостью любого явления в обиходе называю его способность достаточно длительно и с достаточной точностью сохронять те формы своего существования, при утрате которых явление перестает быть самим сабой. Однако не только в обиходе, но и в научной терминалогии устойчивым называют не явление, а систему, в корой оно наблюдается, хотя это не оправдывает логически. Устойчивы ли физические тела - шар или куб? Такой вопрос будет иметь смысл, если речь идет о материале, из которого они сделаны. (Металлический шар

устойчив, шар из дыма нет.) Теорию управления интересует, однако, не эта прочнасная устойчивость. Подразумевается, что система управления как инженерная конструкция заведома устойчива, и в теории изучается устойчивость не самой системы, а ее состояний и функционирования. В одной и той же системе одни состояния или движения могут быть устойчивыми, а другие не устойчивыми. Более того, одно и то же жвижение может быть устойчивым относительно одной переменной и неустойцивым относительно другой - это отмечал еще А.М. Ляпунов [2]. Вращение ротора турбины устойчиво по отношению к угловой скорости и неустойчиво относительно угла поворота вала. Движение ракеты устойчиво относительно траектории и неустойчиво по отношению к неподвижной системе координат. Поэтому нужно оговаривать, устойчивость какого состояния или движения в системе и относительно каких переменных изучается. Так же есть много методов для оценки самой устойчивости. Мы рассмотрим как можно оценить устойчивость системы с логическим алгоритмом управления методом круговых диаграмм.

Рассмотрим теоретическую часть и посмотрим что из себя представляет круговой критерий. Пусть дана система

.

x=Ax+b, =c’x, (1)

где и - в общем случае векторы (и, следовательно, b и с - прямоугольные матрицы), а матрица А не имеет собственных значений на линейной оси. Предположим , что для некоторого ,

система (1), дополненая соотношением , асимптотически усойчива.

Для абсолютной экпоненциальной устойчивости системы (1) в классе М( ) нелинейностей ,t), удовлетворяющих условию

t)/ (2)

достаточно, чтобы при всех выполнялось соотношение

Re{[1+ W(j)]}>0. (3)

Круговой критерий вытекает из квадратичного критерия для формы F(( Действительно, как было показано выше, форма F(j) имеет вид

F(jRe{[1+ W(j W(j)]}||

Из этой формулы после сокращения на || следует (3).

В (3) Случай, когда либо , либо рассматривается аналогично.

Круговой критерий представляет собой распространение линейных частотных критериев устойчивости Найквиста, Михайлова и других на линейные системы с одним линейным или нелинейным, стационарным или нестационарным блоком. Он получается из (3), если вместо передаточной матрицы использовать частотную характеристику линейной части W(j).

Обозначая комплексную переменную W(j)=z, рассмотрим систему с одной нелинейностью, удовлетворяющей одному из следующих условий:

Re[(1+ z( z )]0, если (4)

Re[(1+ z)z ]0, если (5)

Re[z(1+ z )]0, если (6)

Пусть С( ) - облость комплексной плоскости z, определяемая этими условиями. Граница В( ) области определяемая уравнениями получаемыми из (4)-(6) заменой знаков неравенств равенствами. Для (4) получаем окружность, проходящую через точки -1/ , -1/ с центром на оси абсцисс, причем область С будет внутренностью этой окружности, если >0, т.е. если нелинейные характеристики лежат в 1 и 3 квадрантах, и ее внешностью, если сектор ( ) захватывает два смежных квадранта. Если одна из границ сектора совпадает с осью абсцисс, т.е. если =0 или =0 , то область С будет полуплоскостью, а ее граница - вертикальной прямой, проходящей соответственно через -1/ или -1/ . На рисунке 1 показаны границы в плоскости z для различного расположения секторов ( ) в плоскости . Там же изображены кривые W(j), >0 для неособого случая, расположенные так, что возможна абсолютная устойчивость. Однако только приемлимого расположения хаоактеристик W(j) еще недостаточно для суждения об абсолютной устойчивости : кроме этого, нужно еще потребовать, чтобы линейная замкнутоя система была асимптотически устойчивой.

Круговой критерий обеспечивает также абсолютную устойчивость для системы с любым блоком, вход и выход которого удовлетворяют для всех t неравенству

( -)(- )0 (7)

Рисунок 1, а.

Рассмотрим систему, приведенную на рис. 2.

А Х У (P) Z

(-)

G(p) g


Рисунок 2.

Здесь W (p) - оператор линейной части системы, которая может иметь в общем случае следущий вид:


W (p)= ;

(8)

W(p)= ;

Алгоритм регулятора имеет вид:

y= x,

при gx>0

= (9)

- при gx<0,

g=(

В форме уравнений Коши рассматриваемая система имеет вид:

= ,

=- , (10)

k при g >0

где =

- k при g <0,

g=c + ; = .

Соответствие записей системы на рис. 2 достигается, когда при

W (p)= в уравнениях (10) имеем:

(11)

а при W(p)= имеем:

(12)

Причем для обоих случаев (11) и (12) имеет место соотношение

(13)

В соответствии с изложенным одинаково справедливо рассматривать в виде структурной схемы на рис. 2 с известным линейными операторами - и G(p) или в виде формы Коши (10).

Дополнительно отметим, что структурная интерпритация рассматриваемой системы на рис. 2 имеет еще одну структурную схему описания, приведенную на рис. 3.

|x|=c


g y z

(-) x G(p) W(p)


Рисунок 3.

Это означает, что аналитической записи (10) соответствуют два структурных представления исследуемой СПС, причем второе позволяет рассматривать систему (10) как релейную систему с изменяемым ограничение, когда |x| - var.

Далее перейдем к анализу нашего метода.

Согласно частотной теоремы (10), для абсолютной устойчивости системы на рис. 3 лостаточно, чтобы при всех , изменяющихся от до + , выполнялось соотношение:

Re{[1+ W(j)]}>0,

а гадограф W(j)+1 при соответствовал критерию Найквиста.

Для исследуемой системы условие (3) удобнее записать в виде

(4) и (5).

На рис. 4 приведенны возможные нелинейные характеристики из класса М( ) и годографы W(j), расположенные таким образом, что согласно (4) и (5) возможна абсолютная устойчивость.

y ^


y= g ( )


|x| y= g (при =0)

>

0

“а” “б”




“в” “г”

Рисунок 4.

В рассматриваемом случае (10) при

W (p)= , когда

W(p)= W (p)G(p), G(p)= p+1,

годограф W(j) системы на рис. 5.

j

W(j)


> <

=

=0

Рисунок 5.

В случае (10) справедливы графические формы на рис. 4 в,г, т.е. исследуемая система абсолютно устойчива в смысле кругового критерия (3) или (5) при

> (14)

Интересно заметить, что достаточные условия абсолютной устойчивости по Ляпунову

а > 0 , (t) > 0

и

a > c

для рассматриваемого случая совпадают с достаточными условиями абсолютной устойчивости, полученными для кругового критерия (14), если выполняется требование

(t) > 0 (15)

поскольку, согласно (11) и (13) a=a = .

Докажем это, используя условия существования скользящего режима

- k(t)=c k

т.е. подставим сюда вместо коэфициентов а,с, и k их выражения через

, , , тогда получим

- (t)= (16)

Согласно рис. 5 и условия (16) получаем:

1) при = , (t)=0

2) при > , (t)>0

3) при < , (t)<0,

что и требовалось доказать.

Теперь рассмотрим нашу систему с логическим алгоритмом управления, ее логическая схема приведена на рис. 6.

|x|=c


g z

(-) x G(p) (p)



Рисунок 6.

В данном случае считаем что:

- варьируемая величина,

=0.5,

=0.1 (анализ поведения системы при изменении данного параметра исследуется в работе ст-та Новикова, мы берем оптимальное значение),

=0.1,1 (коэффициент обратной связи),

=10,100.

Рассмотрим теперь саму функцию:

W(p)=G(p)W (p),

где G(p) - функция корректора, W (p)= (p)W (p), где

(p)= , а W (p) в свою очередь будет:

W (p)= ,

где , соответственно вся функция имеет вид:

W(p)= ;

Теперь заменяем p на j и имеем вид:

;

Для построения гадогрофа выведем формулы для P(), jQ() которые имеют вид:

P()= ;

jQ( ;

Графики можно посмотреть в приложении N 2.

Учитывая , что добротность должна быть 0.50.7 мы можем определить добротность нашей системы, она примерно равна 0.5. Отсюдо видно, что из-за увеличения и , уменьшается, можно сделать вывод, что колебательность звена увеличиться. Это можно наблюдать на графиках 1.13 - 1.16 в приложении N 2.

Но это не подходит по требованию нашей задачи. Так как > , то можно сделать вывод, что коректор будет влиять только на высоких частотах, а на низких будет преобладать , что можно наблюдать на графиках 1.1 - 1.4. На графиках 1.5 - 1.8 можно наблюдать минемальные значения , это значит что, при этих значениях будет максимальные значения полки нечувствительности релейного элемента.

Минемальные значения полки нечуствительности можно наблюдать на графиках 1.9 - 1.12, особенно при минемальном значении .

Приложение N 1.

Программа для построения годографов на языке программирования

СИ ++.

#include

#include

#include

#include

#include

#include

#include

#include

void Godograf(float Tpr, float Ko, float Kos, int Color,

int Xc, int Yc, int x, int y, int z, int err);

void Osi(int Xc, int Yc, int kol);

int xmax, ymax;

float Kos[]={0.1,1.0},

Ko[] ={10.0,100.0},

Tpr[]={0.01,0.09,0.2,0.5};

void main(void)

{

float P_w, Q_w, w;

int driver, mode, err;

driver = DETECT;

initgraph(&driver,&mode,"");

err = graphresult();

if (err!=grOk) {cout<<"\n\t"<

getch();}

else {

xmax = getmaxx();

ymax = getmaxy();

int Xc=(int)(xmax/2), Yc=(int)(ymax/2);

for(int i=0;i<=1;i++) for(int j=0;j<=1;j++) for(int k=0;k<=3;k++){

cleardevice();

setviewport(0,0,xmax,ymax,0);

Osi((int)(xmax/2),(int)(ymax/2),i+j+k);

Godograf(Tpr[k],Ko[j],Kos[i],15,(int)(xmax/2),(int)(ymax/2),k,j,i,1);

setcolor(7);

setlinestyle(1,0,1);

rectangle(Xc-18,Yc-15,Xc+18,Yc+15);

setlinestyle(0,0,1);

rectangle(10,Yc+5,250,Yc+205);

setcolor(15);

setviewport(10,(int)(ymax/2)+5,250,(int)(ymax/2)+205,1);

setfillstyle(1,0);

floodfill(5,5,7);

line(10,100,230,100);

line(125,10,125,190);

Godograf(Tpr[k],Ko[j],Kos[i],15,125,100,k,j,i,0);};

closegraph();

}

}

void Godograf(float Tpr, float Ko, float Kos, int Color,

int Xc, int Yc, int x, int y, int z, int err)

{

float P_w1=0.0, Q_w1=0.0,

P_w, Q_w,

To=0.5, Tg=0.1, P_w_min=0.0;

for(float w=0;w<=100;w=w+0.05){

if(((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+

(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w))!=0){

P_w = (Ko*w*Tg*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)+

(Kos*Ko*Ko-(To+Tpr)*Ko*w*w))/

((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+

(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w));

Q_w = (Tg*(Kos*Ko*Ko*w-(To+Tpr)*Ko*w*w)-

Ko*(w+Tpr*Kos*Ko*Ko*w-Ko*To*Tpr*w*w*w))/

((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+

(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w));

if (abs(P_w)>abs(P_w1)) P_w1=P_w;

if (abs(Q_w)>abs(Q_w1)) Q_w1=Q_w;

if (P_w

if (P_w1==0) P_w1=P_w1+0.01;

if (Q_w1==0) Q_w1=Q_w1+0.01;

};

};

float KmasX =(float)(xmax-Xc-100)/P_w1,

KmasY =(float)(ymax-Yc-100)/Q_w1;

if (KmasX<0) KmasX=-KmasX; if (KmasY<0) KmasY=-KmasY;

if (KmasX>=220) KmasX=150;

if (KmasY>=140) KmasY=100;

if (err==0) {KmasX=KmasX*4; KmasY=KmasY*4;};

w = 0;

if(((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+

(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w))!=0){

P_w = KmasX*(Ko*w*Tg*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)+

(Kos*Ko*Ko-(To+Tpr)*Ko*w*w))/

((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+

(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w));

Q_w = KmasY*(Tg*(Kos*Ko*Ko*w-(To+Tpr)*Ko*w*w)-

Ko*(w+Tpr*Kos*Ko*Ko*w-Ko*To*Tpr*w*w*w))/

((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+

(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w));

moveto(Xc+P_w,Yc-Q_w); };

setcolor(Color);

setcolor(9);

line(Xc+P_w_min*KmasX,10,Xc+P_w_min*KmasX,ymax-10);

gotoxy(2,5);

printf("K2=");

printf("%f",(-1/P_w_min));

setcolor(15);

for(w=0;w<=700;w=w+0.05){

if(((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+

(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w))!=0){

P_w = KmasX*(Ko*w*Tg*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)+

(Kos*Ko*Ko-(To+Tpr)*Ko*w*w))/

((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+

(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w));

Q_w = KmasY*(Tg*(Kos*Ko*Ko*w-(To+Tpr)*Ko*w*w)-

Ko*(w+Tpr*Kos*Ko*Ko*w-Ko*To*Tpr*w*w*w))/

((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+

(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w));

lineto(Xc+P_w,Yc-Q_w);

};

};

setcolor(13);

circle(Xc-KmasX,Yc,2);

circle(Xc-KmasX,Yc,1);

putpixel(Xc-KmasX,Yc,13);

outtextxy(Xc-KmasX-7,Yc-12,"-1");

setcolor(15);

if (err==1){

if (x==0) outtextxy(10,10,"Tpr = 0.01");

if (x==1) outtextxy(10,10,"Tpr = 0.09");

if (x==2) outtextxy(10,10,"Tpr = 0.2");

if (x==3) outtextxy(10,10,"Tpr = 0.5");

if (y==0) outtextxy(10,30,"Ko = 10");

if (y==1) outtextxy(10,30,"Ko = 100");

if (z==0) outtextxy(10,50,"Koc = 0.1");

if (z==1) outtextxy(10,50,"Koc = 1.0");}

else {

char ch=' ';

while(ch!=27&&ch!=13)

if (kbhit()!=0) ch=getch();};

};

void Osi(int Xc, int Yc, int kol)

{

setcolor(15);

rectangle(0,0,xmax,ymax);

line(Xc,10,Xc,ymax-10);

line(10,Yc,xmax-10,Yc);

line((int)(xmax/2)-3,15,(int)(xmax/2),10);

line((int)(xmax/2),10,(int)(xmax/2)+3,15);

line(xmax-15,(int)(ymax/2)-3,xmax-10,(int)(ymax/2));

line(xmax-15,(int)(ymax/2)+3,xmax-10,(int)(ymax/2));

settextstyle(2,0,5);

outtextxy((int)(xmax/2)+7,10,"jQ(w)");

outtextxy(xmax-35,(int)(ymax/2)+7,"P(w)");

settextstyle(2,0,4);

outtextxy((int)(xmax/2)-8,(int)(ymax/2)+1,"0");

settextstyle(0,0,0);

if (kol==5) outtextxy(5,ymax-15,"'Esc' - exit");

else outtextxy(5,ymax-15,"'Enter' - next ");

setcolor(15);

};

Приложение N 2.

Рисунок N 1.1

Рисунок N 1.2

Рисунок 1.3

Рисунок 1.4

Рисунок 1.5

Рисунок 1.6

Рисунок 1.7

Рисунок 1.8

Рисунок 1.9

Рисунок 1.10

Рисунок 1.11

Рисунок 1.12

Рисунок 1.13

Рисунок 1.14

Вставка 1.15

Рисунок 1.16

Литература:

1. Емильянов С.В., Системы автоматического управления с переменной структурой. - М.: Наука, 1967.

2. Воронов А.А.,Устойчивость управляемость наблюдаемость, Москва “Наука”, 1979.

3. Хабаров В.С. Сранительная оценка методов исследования абсолютной устойчивости СПС: Научн.-исслед. работа.

4. Хабаров В.С. Нелинейные САУ: Курс лекций/ Записал В.Л.Смык,-1997.

Список постраничных ссылок:

1. Ла Салль Ж., Лефшец С. Исследование устойчивости прямым методом Ляпунова.-М.: Мир, 1964.-168 с.

2. Ляпунов А.М. Общая задача об устойчивости движения. - Собр. соч.- М.: Изд-во АН СССР, 1956, т. 2, с. 7-271.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее