166748 (Исследование распределения электропроводности в пересжатых детонационных волнах в конденсированных взрывчатых веществах), страница 6

2016-07-31СтудИзба

Описание файла

Документ из архива "Исследование распределения электропроводности в пересжатых детонационных волнах в конденсированных взрывчатых веществах", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "химия" в общих файлах.

Онлайн просмотр документа "166748"

Текст 6 страницы из документа "166748"

ß = (ulk)/(vх0) ≈ 10-8-10-7, вероятность оказывается действительно малой.

В [1] измерена электропроводность в детонационной волне в азиде свинца. Она оказалась того же порядка, что и при детонации тротила. Вполне возможно, что роль, аналогичную углероду, в таких веществах как азиды, играют металлы, имеющие низкий потенциал ионизации. В этом случае электроны могут возникать в результате термической ионизации атомов металлов, а рассеяние и поглощение их может происходить на макроскопических металлических частицах конденсированной фазы.

    1. 3.3 Электропроводность в неравновесных продуктах детонации

Объяснить высокие значения электропроводности в неравновесной зоне продуктов детонации оказывается возможным. Основанием для гипотезы о механизме неравновесной проводимости послужили эксперименты по исследованию сохраненных продуктов взрыва смеси гексогена и адамантана C10H16 . Углеродная структура адамантана напоминает структуру алмаза, но в случае адамантана углерод соединяется ещё и с атомом водорода. Интересно, что при ударном сжатии в сохраненных продуктах детонации были обнаружены чистые кристаллические алмазы. На основании этого можно сделать вывод о том, что при ударном сжатии рвутся преимущественно C-H связи. При этом молекула теряет атомы водорода, так как они легче чем атомы углерода. Далее предполагается образование высокой плотности положительно заряженных оторвавшихся атомов водорода – фактически протонов, которые быстро нейтрализуются в процессе химической реакции, но успевают внести свой вклад в проводимость неравновесной зоны продуктов детонации.

Оценим величину электропроводности, которую способны обеспечить оторванные протоны. Рассеивающими центрами будем считать атомы. Концентрация атомов n = 1023 см-3, длина свободного пробега l = 1/(nS0) ≈ 10-7 см , где S0 – сечение атома равное 1.55·10-16 см. Оценить электропроводность можно следующим образом –

,

где Nат - количество атомов в молекуле вещества, NH количество атомов водорода в молекуле вещества, l – длина свободного пробега, e – заряд электрона, m – масса протона. Примем mv = (mkT)1/2 , где Т ≈ 3·103 К. Тогда mv ≈ 10-18 см·г·с, а значение электропроводности σ ≈ (NH/ Nат)·10 3 Ом-1∙см-1. Коэффициент (NH/ Nат) в расчете электропроводности дает характеристику молекулы.Для октогена (NH/ Nат) = 8/28 судя по структуре C4H8O8N8 , для гексогена C3H6O6N6 кооффициент (NH/ Nат) = 6/22. Видно, что этот коэффициент большой роли при оценке электропроводности не играет. Величина электропроводности порядка 10 3 Ом-1∙см-1 получена для случая, когда в проводимости участвуют все атомы водорода, и существенно превышает полученные в экспериментах значения электропроводности неравновесных продуктов детонации. Однако, данная модель может иметь место если учитывать, что лишь часть оторванных протонов участвует в проводимости. Такая модель связывает исчезновение высокой электропроводности с окончанием химической реакции, когда все протоны водорода нейтрализованы.

    1. 3.4 Вспомогательные исследования проводимости стеариновой кислоты

На рис.26 приведена осциллограмма эксперимента по измерению проводимости стеариновой кислоты. Стеариновая кислота – органическое соединение C18H36O2, порошкообразного типа на ощупь напоминающее воск. Методика эксперимента аналогична эксперименту по исследованию проводимости взрывчатого вещества при пересжатии. Внутрь цилиндрического измерительного электрода помещалось исследуемое вещество, в нашем случае стеариновая кислота. Остальной объем экспериментальной сборки заполнялся гексопластом.

Рассмотрим поведение осциллограммы. Детонационная волна касается цилиндрического электрода – на осциллограмме это сопровождается затухающими колебаниями. Далее детонационная волна достигает внутреннего электрода – напряжение, как и следовало ожидать, уменьшается, но медленно. Затем заметен резкий спад и выход напряжения на постоянное значение. Эта картина отображает процесс установления стационарного режима при нагружении стеариновой кислоты. Резкий спад – выход на стационарный процесс. По этому спаду можно оценить величину электропроводности, возникающую при сжатии стеариновой кислоты мощным взрывчатым веществом. За время t ≈ 0.6 микросекунды сопротивление изменилось на величину R ≈ 0.03 Ома при скорости детонации D = 7.6 км/с. Тогда σ ≈ 1/RDt.

Оценка дает значение σ ≈ 500 Ом-1∙см-1. Следует ометить, что в стеариновой кислоте содержится огромное количество водорода, который потенциально способен обеспечить полученную величину электропроводности, что в свою очередь подтверждает механизм протонной проводимости.

  1. Заключение

В процессе работы выполнено следущее:

  • Получено распределение электропроводности невозмущённых продуктов детонации насыпных октогена, гексогена, тэна при нормальной детонации с высоким временным разрешением;

  • Получено распределение электропроводности невозмущённых продуктов детонации насыпного тротила и литого тротила при нормальной детонации с высоким временным разрешением;

  • Получено распределение электропроводности невозмущённых продуктов детонации насыпных октогена, гексогена, тэна и тротила при пересжатой детонации с высоким временным разрешением;

  • Выявлена структура зоны проводимости, состоящая из двух зон электропроводности: зоны высокой электропроводности и зоны электропроводности равновесных продуктов детонации. Показано, что зоны проводимости имеют различные механизмы электропроводности и пространственно разделены особенной зоной с крайне низким значением электропроводности;

  • Предложен механизм электронной проводимости в равновесной зоне продуктов детонации;

  • Предложен механизм протонной проводимости в неравновесной зоне продуктов детонации;

  • Проведены постановочные эксперименты по исследованию проводимости органических веществ, необладающих детонационными свойствами, при ударно волновом нагружении, свидетельствующие в пользу протонного механизма электропроводности;

  • Увеличение электропроводности при пересжатии качественно объяснено электронной проводимостью равновесных продуктов детонации и протонной проводимостью в неравновесной зоне;

  1. Благодарности

Автор выражает свою признательность Зубкову П.И. за научное руководство, Тен К.А. за помощь в организации и постановке экспериментов и участие в обсуждении результатов, а также благодарит Скоробогатых Н.Г. за своевременную подготовку экспериментов. Автор отмечает помощь Лукьянчикова Л.А. в решении отдельных организационных вопросов.

  1. Литература

  1. Бриш А.А., Тарасов М.С., Цукерман В.А. Электропроводность продуктов взрыва конденсированных взрывчатых веществ. Журнал экспериментальной и теоретической физики. 1959. Т.37. Вып. 6, С. 1543.

  2. Hayes B. On the Electrical Conductivity of Detonation High Explosives // Proc. 4th Symposium (Internat.) on Detonation. White Oak, MD, 1965. Office of Naval Research, ACR-126. Washington. 1967. P.595-601.

  3. Дрёмин А.Н., Савров С.Д., Трофимов В.С., Шведов К.К. Детонационные волны в конденсированных средах, М., «Наука», 1970.

  4. Антипенко А.Г., Дрёмин А.Н., Якушев В.В. О зоне электропроводности при детонации конденсированных взрывчатых веществ. Доклады Академии наук, 1975, Т. 225, С. 1086.

  5. Дрёмин А.Н., Якушев В.В. Природа электропроводности продуктов детонации конденсированных взрывчатых веществ. Доклады Академии наук, 1975, Т. 221, С. 1143.

  6. Гилёв С.Д., Трубачев А.М. Высокая электропроводность продуктов детонации тротила. Журнал технической физики, 2001, Т. 71, Вып. 9, С. 123.

  7. Ершов А.П., Сатонкина Н.П., Дибиров О.А. и другие Исследование взаимодействия компонентов гетерогенных взрывчатых веществ методом электропроводности. Физика горения и взрыва, 2000, Т. 36, №5, С. 97.

  8. Ершов А.П., Зубков П.И., Лукьянчиков Л.А. Измерение ширины зоны проводимости в тэне. В сб.: Динамика сплошной среды. 1971, Институт гидродинамики, Новосибирск, Вып. 8, С. 177-182.

  9. Новосёлов Б.С., Зубков П.И., Лукьянчиков Л.А. Электропроводимость в зоне детонации конденсированных взрывчатых веществ. Физика горения и взрыва, 1971, Т. 7, Вып. 2, С. 295 - 299.

  10. Ершов А.П., Зубков П.И., Лукьянчиков Л.А. Об измерениях профиля электропроводности во фронте детонации конденсированных ВВ // ФГВ. 1974. Т. 10, №6. С. 864-873.

  11. Зубков П.И., Тен К.А., Свих В.Г. Распределение электропроводности за детонационным фронтом в насыпном октогене. Тезисы XV Международной конференции "Уравнения состояния вещества". Терскол, 2000 г. Стр. 111 - 113.

  12. Зубков П. И., Свих В. Г., Тен К. А. Электропроводность за фронтом детонации в насыпном октогене. Пятая Международная конференция «Лаврентьевские чтения по математике, механике и физике». Тезисы докладов. 2000, Новосибирск, Россия. С. 164.

  13. Зубков П. И., Карташов А. М., Свих В. Г., Тен К. А. Влияние краевых и ударно волновых эффектов на измерение проводимости продуктов детонации конденсированных ВВ. Международная конференция III Харитоновские тематические научные чтения. Экстремальные состояния вещества. Детонация. Ударные волны. Сборник тезисов докладов. Саров, РФЯЦ-ВНИИЭФ, 2001. Стр. 29-31.

  14. Зубков П. И., Лукьянчиков Л. А., Тен К. А., Карташов А. М., Свих В. Г. О некоторых систематических ошибках при измерении проводимости продуктов детонации конденсированных взрывчатых веществ. Тезисы XVI Международной конференции «Воздействие интенсивных потоков энергии на вещество». Эльбрус, 2001. Стр. 41-42.

  15. П.И. Зубков, П.И. Иванов, А.М. Карташов, Л.А. Лукьянчиков, К.А. Тен. Электропроводность продуктов, измеренная вдоль распространения детонации. Международная конференция VI Забабахинские научные чтения. 24-28 сентября 2001 г. Тезисы. Снежинск, Челябинской обл. Россия. Стр.72.

  16. П.И. Зубков, П.И. Иванов, Л.А. Лукьянчиков, В.Г. Свих, К.А. Тен. Электропроводность октогена за фронтом пересжатой детонационной волны. Международная конференция VI Забабахинские научные чтения. 24-28 сентября 2001 г. Тезисы. Снежинск, Челябинской обл. Россия. Стр. 45.

  17. П.И. Зубков, П.И. Иванов, А.М. Карташов, Л.А. Лукьянчиков, В. Г. Свих, К.А. Тен. Измерение проводимости в пересжатой детонации. Тезисы XVII Международной конференции «Уравнения состояния вещества». 1- 6 марта 2002 г. Эльбрус, Кабардино-Балкария, Россия. Стр.65-66.

  18. П.И. Зубков, П.И. Иванов, А.М. Карташов, Л.А. Лукьянчиков, В. Г. Свих, К.А. Тен. Измерение проводимости в пересжатой детонации. Физика экстремальных состояний вещества – 2002. Эльбрус, 2002. Институт проблем химической физики РАН, Черноголовка, 2002 г. Россия. Стр. 93 - 94.

  19. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных явлений. «Наука» Москва, 1966.

  20. Ершов А.П. Диссертация на соискание степени к.ф.-м.н. Исследование электропроводности за фронтом детонации конденсированных взрывчатых веществ. Новосибирск, 1977.

  21. П. И. Зубков, Б. Д. Янковский. К электронному механизму проводимости продуктов детонации конденсированных взрывчатых веществ. Тезисы XV Международной конференции "Уравнения состояния вещества". Терскол, 2000 г. Стр. 109-111.

  22. Лямкин А.И., Петров Е.А., Ершов А.П. и др. // Докл. АН СССР. 1988. Т. 302, №3. С. 611 - 613.

  23. Анчаров А.И., Зубков П.И., Иванов П.И. и др. Получение наночастиц серебра и исследование динамики их развития при ударно-волновом нагружении стеарата серебра. // Вещества, материалы и конструкции при интенсивных динамических воздействиях: Труды международной конференции V Харитоновские тематические научные чтения, Саров, 17-21 марта 2003 г. Под редакцией А.Л. Михайлова. Саров. ВНИИЭФ. 2003 г. С. 141-144.

  24. Титов В.М., Анисичкин В.Ф., Мальков И.Ю. Исследование процесса синтеза ультрадисперсного алмаза в детонационных волнах // ФГВ. 1989.
    Т. 35, №3. С.117.

  25. Антипенко А.Г., Якушев В.В. Природа электропроводности продуктов детонации конденсированных взрывчатых веществ // В сб. Детонация: Материалы 5 Всесоюзного симпозиума по горению и взрыву. Одесса, 1977. ОИХФ АН СССР, Черноголовка, 1977. С. 93-96.

  26. Якушев В.В. Электрические измерения в динамическом эксперименте // ФГВ. 1978. Т. 14, №2. С. 3-19.

  27. Mallory H.D., Plauson R.A. Liquid explosives with transparent detonation products // Nature. 1963. 199, P. 58-59.

  28. Зубков П.И. Электрические сигналы на медно-магниевой паре электродов в ударно сжатых газах // ЖТФ, 1897. Т. 57, №9. С. 1866-1867.

  29. Haman S.D., Linton M. Electrical conductivitiesof aqueous solutions of KCl, KOH and HCl, and the ionization of water at high shock pressures // Trans. Farad. Soc., 1969. 65, p. 2186-2196.

  30. Ставер А.М., Ершов А.П., Лямкин А.И. Исследование детонационных превращения конденсированных ВВ методом электропроводности // ФГВ. 1984. Т. 20, №3. С. 79-83.

  31. Ершов А.П. Ионизация при детонации конденсированных ВВ // ФГВ. 1975. Т. 11, №6. С. 864-873.

  32. Елькинд А.И., Гусар Ф.Н. Измерение на СВЧ электропроводности за фронтом детонационной волны в тротиле // ФГВ. 1986. Т. 22, №5. С. 144-149.

  33. Ершов А.П., Зубков П.И., Лукьянчиков Л.А. Электрофизические свойства детонационной плазмы и быстродействующие взрывные размыкатели тока // ПМТФ. 1977. №6. С. 19-23.

  34. Корольков В.Л., Мельников Л.А., Цыпленко А.П. Электрический пробой продуктов детонации // ЖТФ. 1974. Т. 44, №12. С.2537-2538.

  35. Зубков П.И., Лукъянчиков Л.А., Рябинин Ю.В. Электрическая прочность разлетающихся продуктов детонации // ПМТФ. 1976. №1. С. 134-138.

  36. Матыцин А.И., Ставер А.М., Лямкин А.И. Эмиссия электронов при действии ударных волн на пористое вещество // III Всес. симпозиум по импульсным давлениям: Тез. докл. М., 1979. С.81-82.

  37. Тиман Б.Л. Влияние взаимодействия частиц на ионизационное равновесие в термически ионизованном газе // ЖЭТФ. 1953. Т. 25, №6(12). С.733.

  38. Физика взрыва. Под ред. К.П. Станюкевича. М.: Наука, 1975.

  39. O.V. Evdokov, M.G. Fedotov, G.N. Kulipanov. et al. Dynamics of the formation of the condensed phase particles at detonation of high explosives // Proceedings of the 13th National Synchrotron Radiation Conference. Novosibirsk, Russia, July 17 – 21, 2000. Nuclear instruments & methods in physics research. 2001. V.470, Nos.1 – 2, P.236 – 239.

  40. Алешаев А.Н., Зубков П.И., Кулипанов Г.Н., Применение синхротронного излучения для исследования детонационных и ударно-волновых процессов // ФГВ. 2001. Т. 37, №5. С. 104.

  41. I.Yu. Mal’kov and V.M. Titov. Structure and properties of detonation soot particles. 1996, page 783.

  1. Приложение

    1. Перечень рисунков и таблиц

Рис.1

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее