166254 (Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах), страница 6

2016-07-31СтудИзба

Описание файла

Документ из архива "Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "химия" в общих файлах.

Онлайн просмотр документа "166254"

Текст 6 страницы из документа "166254"

Температура колонки 85°С;

Температура испарителя 125°С;

Расход газа-носителя 25мл/мин;

Ток моста катарометра 100мА;

Скорость ленты самописца 720м/ч.

Исследуемые пробы вводились в хроматограф с помощью микрошприца МШ 10 через головку испарителя. Иглу шприца вводили быстро и на всю длину. Объем пробы 1мкл.

Время удерживания компонентов:

Воздух 23 сек;

Диметиловый эфир 37 сек;

Метилформиат

Метанол 2 мин. 13 сек;

Вода 4мин.51 сек.

Для количественного определения состава жидких продуктов реакции использовался метод абсолютной калибровки с учетом поправочных коэффициентов.

Поправочный коэффициент определяли как тангенс угла наклона прямой, построенной в координатах: Si/SCT=F(Gi/GCT), где Si, Sct - площади пиков определяемого вещества и стандарта; Gi,Gct - их весовые соотношения. За стандарт принимался метанол. Поправочные коэффициенты:

Диметиловый эфир 1,2

Метанол 1

Вода 1,21

Для определения содержания компонентов рассчитывались площади соответствующих пиков по формуле:

Si=hi*bi*Mi (1)

где: hi - высота пика, мм;

bi - ширина пика на середине высоты;

Mi - масштаб записи пика.

Процентное содержание каждого компонента вычислялось по формуле:

Ci=(Si*Ki*100)/ (2)

где: Si - площадь пика компонента, мм ;

Ki - поправочный коэффициент для данного компонента.

13.3. Методика анализа газообразных продуктов

Анализ газообразных продуктов реакции, содержащих Н2, СО, СО2, CH4, ДМЭ и смесь углеводородов С2 - С4, проводили на хроматографах ЛХМ-8МД с использованием катарометров, четырех насадочных колонок и печи конверсии углеводородов. Анализируемым газом последовательно продували петли кранов-дозаторов и далее пробу газа вводили на анализ в колонки А и Г. По завершении анализа на этих колонках газ подавался на колонки Б и В.

Условия анализа ДМЭ (колонка А):

Колонка из нержавеющей стали, L=1,5м, D=2мм.

Адсорбент Порапак PQS;

Газ-носитель Не ;

Температура испарителя 125°С;

Расход газа-носителя 30 мл/мин

Ток моста 120 мА.

Условия анализа углеводородов (колонка Б):

Колонка из нержавеющей стали, L=6м, D=2мм.

Колонка из нержавеющей стали, L=l ,5м, D=2мм.

Адсорбент А12О3;

Газ-носитель Аг;

Температура колонки 75°С

Расход газа-носителя 30 мл/мин

Ток моста 65 мА;

Температура печи конверсии углеводородов 900°С.

Условия анализа Аr, СО (колонка В):

Колонка из нержавеющей стали, L=4м, D=2мм.

Адсорбент молекулярные сита, 5А;

Газ-носитель Не ;

Температура колонки 75°С

Температура испарителя 125°С;

Расход газа-носителя 30 мл/мин

Ток моста 120мА.

Условия анализа Н2, CH4, CO2 (колонка Г):

Колонка из нержавеющей стали, L=2м, D=2мм.

Адсорбент уголь СКТ;

Газ-носитель Аr;

Температура колонки 75°С

Расход газа-носителя 30 мл/мин

Ток моста 65 мА.

Калибровочные коэффициенты определялись по площадям пиков, полученных при заколе чистых веществ на соответствующие колонки, в соответствии с уравнениями:

КДМЭ =SAr2 / SДМЭ

KH2=SH2/ SHе

KCO=SCO/SAr1

KCO2=SCO2/SAr2

KCH4=SCH4/SAr1

где SHе, SAr1 , SAr2 - площади пиков чистых аргона и гелия, полученных соответственно с колонок Г, В и А. Калибровочные коэффициенты проверяются каждые два месяца, площади пиков берутся как среднее значение из трех вводов. Значения калибровочных коэффициентов представлены ниже:

КДМЭ = 0,68

KH2= 1,64

KCO= 0,75

KCO2= 2,58

KCH4= 0,5

Ежедневно хроматографы калибровались по аргону и гелию.

Концентрации газообразных продуктов реакции (%об.) определялись по формулам:

CДМЭ=SДМЭ*KДМЭ*MДМЭ*100/(S Ar2*M Ar2) (3)

СН2=SH2*MH2*100/(KH2*SHe*MHe) (4)

CCO=SCO*MCO*100/(KCO*SAr1*MAr1) (5) CCO2=SCO2*MCO2*100/(KCO2*SAr2*MAr2) (6) CCH4=SCH4*MCH4*100/(KCH4*SAr1*MAr1) (7)

где: Sдмэ= SH2, Sco, SCO2, SCH4 - площади пиков компонентов газообразных продуктов реакции,

М - масштаб записи пика,

К - калибровочные коэффициенты.

Концентрации углеводородной смеси рассчитывались по формуле:

Ci=Si*Ki*100/(Si*Ki) (9)

где: Si- площади пиков компонентов углеводородной смеси,

Ki- количество молекул водорода в углеводороде.

Далее концентрация водорода в смеси углеводородов приравнивалась к СH2, полученной из уравнения (10) и соответственно пересчитывались концентрации всех углеводородов по пропорции:

CУ.В. (1) =CH2* CУ.В. / CH2 У.В. (10)

где: CУ.В. (1) - концентрация углеводорода, приведенная к одинаковой концентрации водорода в составах газа, полученных по результатам разных анализов.

Полученные концентрации углеводородной и не углеводородной газовых смесей приводились к одному составу по уравнению:

C i =C ri * 100 / (  ( Cr+( CУ.В. (1)- -( CH2 У.В. + CCH4 У.В.)) (11)

где: C ri - концентрация i-того компонента углеводородной или не углеводородной газовых смесей,

Сг - концентрации не углеводородной газовой смеси,

CH2 У.В. , CCH4 У.В концентрации водорода и метана в углеводородной газовой смеси.

Количество газа, полученное за время опыта, определялось исходя из известного количества аргона, подаваемого в реактор, и его концентрации в смеси газообразных продуктов реакции по уравнению:

Vr = (VAr/CAr)*100-VAr (12)

13.4 Методика определения удельной поверхности

Измерение удельной поверхности дисперсных пористых тел, в том числе катализаторов и сорбентов, является в настоящее время необходимым элементом научных исследований и средством контроля в соответствующих технологических процессах. Из многочисленных методов определения удельной поверхности твердых тел наиболее универсальными и широко используемыми являются методы газовой адсорбции [35].

Для определения удельной поверхности интересующих нас образцов в работе был использован метод низкотемпературной десорбции аргона. Анализ проводили на приборе ЛХМ-8МД при следующих условиях:

Ток моста катарометра92мА;

Скорость газа-носителя гелия с 10% об. Аргона 30 мл/мин.;

Температура образца катализатора - 195,8°С;

Эталон - -А12О3 Sуд. = 160м2/г.

Расчет удельной поверхности проводили методом сравнения площадей де-сорбционных пиков, пропорциональных поверхности образца и эталона в соответствии со следующим уравнением [35 ]:

Siуд=si*g оэт* Sэтуд(gi*sэт0 )

где: Si- площадь десорбционного пика образца, мм ;

gi - навеска образца, г;

sэт0 - площадь десорбционного пика эталона, мм ;

gоэт - навеска эталона, г;

Sэтуд - удельная поверхность эталона, м2/г.

13.5 Методика приготовления катализаторов

В связи с широким применением катализаторов в промышленности основного органического синтеза производится большое количество катализаторов, различающихся как по химическому составу, так и по методу их приготовления.

Катализатор должен обладать рядом свойств, обеспечивающих рентабельность его использования, а именно:

- высокой активностью и селективностью;

- большой поверхностью активного компонента;

- достаточной устойчивостью к действию ядов и высоких температур;

- достаточной механической прочностью;

- оптимальными гидродинамическими характеристиками, которые обуславливаются размерами, формой и плотностью упаковки зерен катализатора [36].

К методам приготовления катализаторов предъявляется ряд требований; они

должны обеспечивать получение катализаторов, обладающих заданными химическим и физическим составами, высокой удельной поверхностью, а также быть малоотходными. Выбранный метод приготовления катализатора определяет степень дисперсности, пористую структуру и форму катализатора, а, следовательно, и его активность. В процессе данного исследования нами применялись катализаторы, приготовленные следующим способом:

Аморфный алюмофосфат в смеси с 10% SiO2 был получен путем осаждения из раствора азотнокислого алюминия и фосфорной кислоты аммиаком. Сначала брали определенное количество SiO2 и засыпали его в дистиллированную воду, затем добавляли нитрат алюминия, после этого к полученному раствору добавлялась 100% ортофосфорная кислота. Полученный раствор тщательно перемешивали в течение 30 мин. После чего проводилась нейтрализация полученного раствора путем постепенного добавления аммиачной воды при постоянном перемешивании. При достижении значения рН = 6 - 8 в растворе образовывался аморфный осадок, который отделяли от маточного раствора путем фильтрования и промывали дистиллированной водой. Полученную массу сушили в течении 6 ч. при Т = 110°С.

14. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В данной работе были исследованы каталитические системы на основе аморфного алюмофосфата с SiO2 в процессе дегидратации метанола до диметилового эфира.

Задачей данного исследования являлось приготовление серии образцов аморфного алюмофосфата, прокаленных при разной температуре, а также с разным содержанием SiO2. Физико -химические характеристики, полученных образцов представлены в таблице.

Из результатов экспериментов, ранее проведенных на кафедре ТНХС и ИЖТ МИТХТ им. М.В. Ломоносова, а также на основе литературных данных [16, 71], было установлено, что оптимальными температурами для протекания процесса дегидратации метанола в присутствии различных каталитических систем является диапазон температур 250-350°С. Исходя из этого, были выбраны условия проведения эксперимента, а именно диапазон температур 200-350°С и объемной скорости 1ч' по исходному метанолу.

СПИСОК ЛИТЕРАТУРЫ

1. «Энергия» 2002, N 11. С. 42-44.

2. Бухаркин А.К., Лихтерова Н.М., Капкин В.Д. «Основы химии и технологии производства и применения транспортных энергоносителей». Москва, МИТХТ, 1997

3. John Bogild Hansen, Bodil Voss, Finn Joensen, Inga Dora Siguroardottir. «Large scale manufacture of dimethyl ether - a new alternative diesel fuel from natural gas», International Congress & Exposition, Detroit, Michigan, February 27 - March 2,1995. SAC Paper 950063, 1995.

4. Караваев М.М., Леонов А. Л., Мастеров Б. П. «Промышленный синтез метанола». Москва, «Химия», 1974 г.

5. Караваев М.М. и др, «Технология синтетического метанола». Москва, «Химия», 1984 г.

6. Хенрице-Оливе Г., Оливе С., «Химия каталитического гидрирования СО». Москва, «Мир», 1987

7. «Перспективные автомобильные топлива». Под редакцией
Черникова Я.Б., Москва, Транспорт, 1998 г.

8. Смаль Ф. В., Аксенов Е. Е., «Перспективные топлива для автомобилей». Москва, Транспорт, 1979 г.

9. Гайнуллин Ф. Г., «Природный газ как моторное топливо на транспорте». Москва, Транспорт, 1986 г

10. Simon A., Stumpf H., J. Chem. Soc. Faraday Trans. 1- 1981, V. 77, №9, P. 2209-2221.

11. Топчиева К.В., Кубасов А.А., Тыонг Ван Дао, «Дегидратация метилового спирта на щелочных формах цеолитов X и Y», Вестник МГУ. Химия. 1972, т. 13, №6, стр. 628-632.

12. Хамагульгова Н.С., Хадишев С.Н., Кубасов А.А., «Закономерности конверсии метанола в микрореакторе на цеолитах ультрасил», Вестник МГУ. Химия. 1981, т. 22, №2, стр. 156-160.

13. Нефедов Б.К., Сергеева Н.С., «Влияние состава катализатора Rh -носитель и добавок различных веществ в зону реакции на карбонилирование метанола окисью углерода при атмосферном давлении», Известия АН СССР, серия Химия. 1976, №10, стр. 2271 -2276.

14. Соловьев А.А., Каденцев В.И., Чижов О.С., «Метиловык эфиры метилдезоксигексопиранозидов», Известия АН СССР, серия Химия. 1976, №11, стр. 2500-2505.

15. Герич А.П., Шмелев А.С., «Кинетика образования диметилового эфира на у-А12О3 », «Метанол и его переработка», сборник трудов НИИТЭХИМ и ГосНИИ Метанолпроект, Москва, 1985, стр. 49 - 52.

16. Светляков Е.Б., Флид P.M., «Кинетика реакции дегидратации метанола и гидрохлорирования диметилового эфира на катализаторах парофазного синтеза хлористого метила», Журнал Физической химии. 1966, том XL., №12, стр. 3055 - 3059.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5231
Авторов
на СтудИзбе
424
Средний доход
с одного платного файла
Обучение Подробнее