166223 (Полимерные композиты на основе активированной перекисью водорода целлюлозы и малеиногуанидинметакрилатом), страница 4

2016-07-31СтудИзба

Описание файла

Документ из архива "Полимерные композиты на основе активированной перекисью водорода целлюлозы и малеиногуанидинметакрилатом", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "химия" в общих файлах.

Онлайн просмотр документа "166223"

Текст 4 страницы из документа "166223"

Стратегия и тактика создания новых биоцидных веществ может опираться на следующие ключевые моменты [44].

    1. Принцип химического модифицирования структуры известных синтетических и природных биоцидных веществ, при этом предполагается, что биологическая активность нового соединения окажется более высокой.

    2. Принцип введения биоцидной группы известного вещества в молекулу нового вещества.

    3. Принцип молекулярного моделирования, в котором учитывается пространственное строение биоцида и биорецепторного участка его захвата.

    4. Стратегия пробиоцида, когда действующее начало доставляется к месту действия некоей комбинированной молекулой, из которой в необходимом месте выделяется собственно биоцидное вещество.

    5. Концепция антиметаболитов, веществ, которые подменяют метаболит в естественных биореакциях и нарушают их нормальное протекание, т.к. не могут в полном объеме заменить природный объект.

    6. Принцип использования полимерной матрицы или полимерного вещества, который в первую очередь приводит к пролонгированному действию и контролю подачи необходимого биоцида.

1.6 Механизм биоцидного действия полиэлектролитов

Под собственной физилогической активностью полимеров обычно понимают активность, которая связана с полимерным состоянием и не свойственна низкомолекулярным аналогам или мономерам [45]. С учетом сказанного выше, механизмы проявления собственной физиологической активности могут включать в себя как важнейшую составляющую физические эффекты, связанные с большой массой, осмотическим давлением, конфор- мационными перестройками и др., а также могут быть связаны с межмолекулярными взаимодействиями и с биополимерами организма. Многие биополимеры организма являются полианионами (белки, нуклеиновые кислоты, ряд полисахаридов), а биомембраны также имеют суммарный отрицательный заряд. Взаимодействие между противоположно заряженными полиэлектролитами протекают кооперативно, причем образующиеся в результате поликомплексы достаточно прочны. Известно, что наибольшее значение имеют при таких взаимодействиях плотность заряда и молекулярная масса [4, 5, 17-19]. Если же говорить о биоцидных свойствах, то важную роль в этом случае играет знание механизма действия.

Последовательность элементарных актов летального действия полиэлектролита на бактериальные клетки может быть представлены следующим образом [5]:

      1. адсорбция поликатиона на поверхности бактериальной клетки;

      2. диффузия через клеточную стенку;

      3. связывание с цитоплазматической мембраной;

      4. разрушение или дестабилизация цитоплазматической мембраны;

      5. выделение из клетки компонентов цитоплазмы;

      6. гибель клетки.

В первую очередь, это касается поликатионов, так как биомембраны имеют отрицательный суммарный заряд, хотя отрицательно заряженные в целом клеточные мембраны имеют изолированные поликатионные области, на которых могут сорбироваться полианионы [45].

При изучении влияния различных факторов на уровень антимикробной активности катионных полиэлектролитов было показано [46], что их активность возрастает с увеличением числа ионогенных групп в макромолекуле [5]; молекулярная масса и характер распределения ионогенных групп по цепи не влияют существенно на уровень антимикробной активности. Использование полиэлектролитов с люминисцентной меткой [47] при изучении взаимодействия полимеров с эритроцитами и бактериальными клетками показало, что полимер быстро связывается клеточной стенкой и цитоплазматической мембраной, а затем уже проникает в цитоплазму и ядро клетки. При этом увеличивается проницаемость клеточной мембраны как для низкомолекулярных [5, 30, 31], так и высокомолекулярных веществ [48]. Повышение концентрации полиэлектролитов до 50-100 мкг мл"1 и более приводит к интенсивному повреждению клеточной мембраны, обнаруживаемому по выделению из клеток белков и нуклеиновых кислот [49-50].

Ключевым моментом в механизме действия катионных полиэлектролитов на биологические мембраны является электростатическое взаимодействие с отрицательно заряженными фосфолипидами и белками, локализованными в ней. Следствием этого является нейтрализация заряда мембраны и клетки в целом, а также изменение соотношения гидрофобных и электростатических взаимодействий, стабилизирующих мембрану.

В работе [51] исследовано поведение полиэлектролитов в биологическом окружении. Авторы для изучения взаимодействия клеток с полиэлектролитами использовали модельные системы - бислойные липидные везикулы. Поведение системы поликатион-везикула было исследовано в зависимости от строения и линейной плотности заряда поликатиона, фазового состояния мембраны, содержания заряженного липида в везикулах и их размера, а также ионной силы раствора. Показано, что данное взаимодействие может сопровождаться латеральной агрегацией липидов, резким ускорением трансмембранной миграции липидных молекул (флип-флопом), торможением обмена липидов между везикулами, встраиванием адсорбированных макромолекул в везикулярную мембрану, а также агрегацией и разрушением везикул. Поликатионы, адсорбированные на мембране только за счет электростатических взаимодействий, могут быть количественно вытеснены в раствор при увеличении ионной силы раствора или при добавлении избытка полианиона-конкурента. Это приводит к восстановлению как исходного распределения липидов в мембране, так и межвезикулярного обмена липидов. Гидрофобизация основной цепи поликатиона или модификация цепи боковыми гидрофобными радикалами обеспечивает стабильность комплекса поликатион-везикула в водно-солевых растворах и в присутствии значительных избытков отрицательно заряженных полиионов за счет встраивания гидрофобных фрагментов поликатиона в гидрофобную часть везикулярной мембраны.

Полученные результаты представляют интерес с точки зрения прогнозирования возможных последствий контакта полиэлектролитов и биоцидных веществ на их основе с клеточной поверхностью. Таким образом, дестабилизация мембраны ведет к изменению локализации и фосфолипид- ного окружения ферментов, связанных с мембраной, что естественно отражается на их активности. При этом несомненный интерес представляет выяснение влияния катионных полиэлектролитов на бактериальные ферменты, обусловливающие устойчивость бактериальных клеток к антибиотикам.

Оказалось , что катионные полиэлектролиты взаимодействуют также и с бактериальными ферментами. Обнаружено ингибирующее действие четвертичных аммониевых солей полидиэтиламиноэтилметакрилата и полиди- метиламиноизопропилметакрилата на ферменты «агрессии» (факторы пато- генности) золотистого стафилококка - плазмокоагулазу и гиалуронидазу, которые обуславливают его патогенность [50]. Эти полимеры также подавляли способность стафилококкового а-токсина гемолизировать эритроциты кролика. Катионные полиэлектролиты проявляют ингибирующее действие также в отношении бактериальных ферментов, инактивирующих антибиотики; пенициллиназу, гидролизующую амидную связь Р-лактамного кольца пенициллинов и превращающую пенициллины в неактивные пенициллои- новые кислоты. Свойство катионных полиэлектролитов подавлять активность бактериальных ферментов, инактивирующих антибиотики, а также повышать проницаемость клеточной стенки и цитоплазматической мембраны может способствовать усилению действия антибиотиков в отношении резистентных (устойчивых к действию антибиотиков) штаммов бактерий, так как при этом создаются условия, облегчающие достижение антибиотиком его мишени в клетке. Поэтому катионные полиэлектролиты представляют интерес не только как новые антимикробные вещества, но и как мем- бранотропные биологически активные полимеры-носители для низкомолекулярных биоцидных веществ.

Таким образом, по имеющимся к настоящему времени данным, механизм биоцидного действия катионных полимерных биоцидных веществ, и, в частности, аминогуанидинсодержащих, состоит в следующем. Поскольку микроорганизмы обычно обладают отрицательным суммарным электрическим зарядом, они субстантивны к катиону бактерицидного препарата, который, соприкасаясь с микроорганизмом, адсорбируется на клеточной мембране, вызывает ее лизис и проникает внутрь клетки. Находясь внутри нее, препарат оказывает блокирующее действие на биологическую активность ферментов, препятствует репликации нуклеиновых кислот и угнетает дыхательную систему [52-53]. В своей совокупности этот комплекс воздействий препарата приводит к гибели микроорганизма.

2 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проблема создания биологически активных волокнистых материалов в последние десятилетия вызывает все возрастающий интерес. Широкое развитие исследований по приданию биоцидных свойств именно целлюлозным волокнистым материалам обусловлено тем, что целлюлоза является доступным и распространенным в природе полимерным материалом. Исследования, посвященные синтезу производных целлюлозы, содержащих антимикробные вещества, разработке научных основ получения биоцидных целлюлозных волокнистых материалов с заданными свойствами, методов и технологии их изготовления, а также изучению свойств и наиболее эффективных областей применения указанных материалов имеют большое научное и практическое значение.

Перед исследователями стоит вопрос о том, при каких типах химической связи между антимикробным веществом и макромолекулой целлюлозы проявляется антимикробная активность материала, как влияет строение введенных биоцидных веществ, в том числе и полимеров, на химические и антимикробные свойства модифицированной целлюлозы. Систематическое исследование этой проблемы имеет существенное теоретическое и большое практическое значение, так как только научно обоснованный подход позволит создать высокоактивные антимикробные волокнистые материалы, антимикробные свойства которых будут сохраняться на протяжении всего периода применения изготовленных из них изделий даже при очень жестких условиях эксплуатации и многократных мокрых обработках.

В настоящее время описано большое число биоцидных производных целлюлозы и других волокнообразующих полимеров разного строения. Вопрос о влиянии строения производных целлюлозы, содержащих химически связанные антимикробные вещества, на антибактериальные свойства этих полимеров был изучен в цикле работ, обобщенных в [28-29]. В этих работах были синтезированы производные целлюлозы (в виде волокнистых мате- риалов), содержащие антимикробные вещества акридинового ряда, галоген- производные фенола (ГПФ), галогены или ионы серебра, связанные с различными функциональными группами макромолекулы модифицированной целлюлозы разными типами химических связей (координационными, ионными, лабильными и стабильными ковалентными), и исследована их антимикробная активность.

Анализ приведенных выше литературных данных показывает, что в последние годы синтезировано большое число производных целлюлозы, содержащих разные антимикробные вещества, присоединенные различными типами химических связей. В настоящее время происходит процесс накопления экспериментальных данных о влиянии строения нерастворимых в воде производных целлюлозы, содержащих химически связанные антимикробные вещества, и характера связи между молекулой антимикробного вещества и макромолекулой полимера на антимикробные свойства волокнистого материала. Установлено, что полимеры с прочной ковалентной связью между производным целлюлозы и антимикробным веществом не обладают антибактериальной активностью. Антимикробная активность волокнистых материалов, содержащих антимикробные вещества, присоединенные ионной или координационной связью, обусловлена отделением антимикробного вещества от полимера вследствие гидролиза указанных связей, диффузией антимикробного вещества из полимерного материала и взаимодействием его с микробной клеткой. Аналогичный механизм антимикробного действия может быть принят для производных целлюлозы, содержащих антимикробные вещества, присоединенные лабильной ковалентной связью (альдиминовой, аце- тальной, триацетальной, сложноэфирной).

Проведенные исследования позволили обосновать и сформулировать представления о механизмах антимикробного действия волокнистых материалов, содержащих химически связанные антимикробные вещества: антимикробная активность изученных волокнистых материалов, обусловлена тем, что антимикробное вещество, присоединенное химической связью к функциональной группе модифицированной целлюлозы, постепенно отщепляется от этой группы вследствие гидролиза связи, диффундирует из волокнистого материала и вступает во взаимодействие с микробной клеткой .

Как было показано в литературном обзоре, способность целлюлозы и ее производных образовывать ковалентные, ионные или координационные связи с солями четвертичных аммониевых оснований широко используется для модификации большого числа целлюлозных волокнистых материалов, при этом в конечном продукте часто проявляется синергизм уникальных свойств исходных компонентов. Выбор окисленной целлюлозы хлопковой и аминогуани- динсодержащих цвиттер-ионных делокализованных резонансных структур для получения новых модифицированных моно- и биматричных композиционных материалов открывает перспективу создания наноструктур и нанокомпозитов с трансформерной полимерной матрицей, представляющих существенный научный и практический интерес. Изделия на их основе можно использовать для изготовления одежды, упаковки, перевязочных материалов медицинского назначения, а также фильтрующих мембран для стерилизации воздуха и обеззараживания речной воды, обладающих одновременно пролонгированными биоцид- ными и легко регенирируемыми адсорбционными свойствами, поскольку в состав аминогуанидинсодержащих мономеров и полимеров входят ионогенные группы. Именно назначение будущих изделий в значительной степени определило способы их получения, состав и важнейшие параметры новых биоцидных мономеров, тип связывания в них основного биоцидного компонента, природу супрамолекулярных связей, обуславливающих его иммобилизацию с матрицей в композитах, полученных нами.

Отметим, что все исследования проводились с одной партией исходных и синтезированных веществ.

При создании композиционных материалов, в том числе и нанокомпозитов с полимерной биматрицей, мы руководствовались тем, что каждый из предполагаемых процессов взаимной иммобилизащш можно условно разделить на четыре типа включения основного биоцидного компонента (катиона гуанидиния) в зависимости от природы носителя:

  1. механический, когда за счет пропиточного раствора аминогуанидинметакрилата (АГМ) биоцидный компонент остается на поверхности окисленной целлюлозы (ОЦХ) и может быть использован как «ударная доза», т.к. деиммобилизуется первым;

  2. сорбированный, когда биоцидный компонент связан с носителем за счет ионных, водородных, ван-дер-ваальсовых связей; деиммобилизуется пролонгировано;

  3. химический, когда биоцидный компонент связан ковалентными связями с карбонильными и карбоксильными группами ОЦХ, или в результате привитой полимеризации АГМ (матрица - ОХЦ) в присутствии персульфата аммония.

  4. сорбционно-химический, при полимеризации АГМ in situ.

Ключевым фактором при создании композитов на основе целлюлозы хлопковой и биоцидного компонента явилась предварительная активация исходных компонентов для придания способности к структурной и химической взаимной иммобилизации и дополнительной целенаправленной модификации. С этой целью целлюлоза хлопковая (взятая в виде волокнистого материала и бинта) обрабатывалась 1 М водным раствором перекиси водорода. Как было показано в литературном обзоре, при окислении целлюлозы перекисью водорода происходит неизбирательное окисление, в результате которого возможно образование карбонильных (альдегидных и кетонных) и карбоксильных групп, с разрывом и без разрыва пиранового кольца.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее