107403 (Самолётные связные радиостанции)

2016-07-31СтудИзба

Описание файла

Документ из архива "Самолётные связные радиостанции", который расположен в категории "". Всё это находится в предмете "наука и техника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "наука и техника" в общих файлах.

Онлайн просмотр документа "107403"

Текст из документа "107403"

Самолётные связные радиостанции

Курсовая работа по физическим основам получения информации

Выполнил Москалев А. В., студент гр. ИВК-03-01

Пермский государственный технический университет

Кафедра ИВК

Пермь 2005

1. Назначение:

Бортовые связные радиостанции предназначены для обеспечения связи экипажа с наземными командно-диспетчерскими пунктами как на малых (являются резервными для командных PC), так и на больших расстояниях (до нескольких тысяч километров). Связные PC работают в диапазоне волн 2 ...24 МГц и обеспечивают:

симплексную связь телефонную (в режимах амплитудной модуляции и однополосной модуляции);

телеграфную (в режимах амплитудной модуляции AT, частотной модуляции ЧТ).

Перестройка каналов в рабочем диапазоне частот — дискретная. Малый шаг сетки частот PC обеспечивает достаточно точную настройку на частоты наземных PC, что позволяет осуществлять связь бортовых PC со всеми типами наземных PC. PC обеспечивают симплексную телефонную и телеграфную связь. При использовании телеграфной модуляции (применяется амплитудная и частотная телеграфия) дальность связи возрастает.

Применяются следующие типы связных PC: на ВС — «Микрон», «Карат» (на ВС местных воздушных линий). В настоящее время широко используется также радиостанция «Ядро».

2. Структурная схема бортовой PC :

Содержит следующие типовые узлы (рис. 1): антенну А, приемопередатчик Прм — Прд, блок питания БП, пульты непосредственного и дистанционного управления ПУ, устройство настройки и контроля УНК и оконечные устройства - микрофон (Мкф) и телефон (Тлф). Приемо-передатчик состоит из генератора передающего и приемного каналов.

Рис. 1. Структурная схема бортовой радиостанции передатчика

Передающий канал образуют генератор Г, передатчик Прд, антенный переключатель АП, антенна А (рис. 2).

Рис. 2. Структурная схема приемо-передатчика

Приемный канал образуют антенна, АП и Прм.

Трансиверная схема построения PC использует при приеме и передаче одни и те же функциональные узлы — генератор, АП и антенну.

Генератор обеспечивает получение высокостабильных (как по частоте, так и по амплитуде) колебаний, работает в автоколебательном режиме на одной частоте, преобразуя энергию постоянного тока блока питания в энергию электрических колебаний переменного тока нужной частоты. В передатчике такой генератор называется задающим, в приемнике — гетеродином. Высокая стабильность частоты генератора обеспечивается применением в его схеме кварцевой стабилизации.

3. Структурная схема приемника (рис. 3):

Структурная схема супергетеродинного приемника приведена на рис. 3, на рис. 3.1б, в, г, д, е, ж изображены спектры колебаний на выходе каждого каскада. Представляющий интерес радиосигнал с выхода антенны (рис. 3.1б) выделяется, отфильтровывается входной цепью (рис. 3.1в) и поступает на преобразователь, а на входе преобразователя появляется модулированный радиосигнал с несущей промежуточной частотой (рис. 3.1г). Этот радиосигнал усиливается усилителем промежуточной частоты (УПЧ) (рис. 3.1д), детектируется, в результате чего получается низкочастотный управляющий сигнал (рис. 3.1е). Управляющий сигнал усиливается усилителем звуковой частоты (УЗЧ) (рис. 3.1ж) и поступает в громкоговоритель.

Рис. 3. Структурная схема приемника супергетеродинного типа

Рис. 3.1. Спектры колебаний

3.1. Преобразователи частоты:

Преобразователем частоты в супергетеродинном приемнике называют устройство, осуществляющее преобразование несущей радиочастоты принимаемого сигнала в несущую промежуточную частоту без изменения модуляции сигнала, т. е. назначением преобразователя частоты является перенос спектра радиосигнала из одной области частот в другую. Промежуточная частота может быть как выше радиочастоты, так и ниже. Это обусловлено удобством реализации процессов фильтрации и других операций обработки сигнала.

Рис. 3.2. Структурная схема преобразователя частоты

Принципиально для преобразования частоты сигнала необходим либо нелинейный элемент, либо элемент с переменным параметром. На этот элемент подают колебания от вспомогательного источника, называемого гетеродином. В связи с этим нелинейный элемент, преобразующий частоту принимаемого сигнала с помощью гетеродина, называют смесителем. В состав преобразователя частоты входит также резонансная нагрузка, с помощью которой осуществляется селекция составляющих сигнала с промежуточной частотой. В качестве такой нагрузки наиболее часто используют полосовой фильтр. Структурная схема преобразователя изображена на рис. 3.2.

4. Структурная схема передатчика включает (рис. 4):

Рис. 4. Структурная схема передатчика

АМ—амплитудный модулятор; УНЧ—усилитель низкой частоты; МкУ—микрофонный усилитель; ГВЧ—генератор высокой частоты; УМ—усилитель мощности; А—антенна; Кл—ключ для переключения в телеграфный режим.

Режимы работы связной PC:

амплитудная модуляция (AM);

однополосная модуляция (ОМ) с частично подавленной несущей; амплитудная манипуляция (AT);

частотная манипуляция (ЧТ).

Амплитуда модулирующего сигнала при AM модуляции

Uмод = Um cos 2πFt,

где Um — значение амплитуды сигнала; F — частота колебаний; t — время.

Колебания несущей (модулируемой) частоты изменяются по закону

U = Um (t) cos2nfн t, (1)

где Um — значение амплитуды; fн — значение несущей частоты.

В процессе AM амплитуда несущей частоты изменяется по закону

Um(t)=Um0 + ΔUmcos2πFt, (2)

где U т0 —амплитуда немодулированного колебания; ΔUm= Kа.м Umмод (здесь Kа.м – коэффициент передачи модуляционного устройства).

Подставляя Um(t) из выражения (2) в формулу (1), получим

U = Um0 [cos2πfнt + m/2cos2π(fн – F)t + m/2cos2π(fн + F)t],

где m= ΔUm/Um0 — коэффициент амплитудной модуляции.

Спектр AM колебаний при гармоническом модулирующем сигнале (рис. 5) состоит из трех составляющих: несущей частоты fн, нижней боковой частоты (fн — F) и верхней боковой частоты (fн + F). Амплитуды составляющих зависят от коэффициента модуляции т. Если амплитуда Um0 неизвестна, то коэффициент модуляции

m=(Umax - Umin)/(Umax + Umin).

Модулирующий сигнал сложный и содержит составляющие с частотами от Fmin до Fmax . Каждой из них соответствует своя составляющая нижней и верхней боковых частот модулированного колебания. Спектр AM колебаний содержит две боковые полосы частот. Следовательно, ширина спектра сигнала в канале радиосвязи Δf в 2 раза больше, чем ширина спектра модулирующего сигнала.

Однополосная модуляция с подавленной несущей (ОМ) путем фильтрации АМ-сигнала формирует однополосный сигнал (фильтры передающего тракта не пропускают несущую и одну боковую полосу). Полезная информация при этом не теряется, так как нижняя и верхняя боковые полосы абсолютно идентичны, а несущая частота информации не несет. Несущая частота нужна при приемке для восстановления АМ-сигнала для последующего детектирования. Наибольший энергетический выигрыш дает полное исключение несущей частоты и одной боковой полосы. Переход на однополосную работу равносилен 16-кратному выигрышу по мощности.

Режим однополосной модуляции с частично подавленной несущей реализуется путем отфильтровывания одной боковой полосы и частичного уменьшения амплитуды несущей.

Рис. 5. Эпюры модулирующего синусоидального напряжения

Разновидность амплитудной модуляции — амплитудная телеграфная AT) манипуляция Сигнал передается в виде азбуки Морзе (точки и тире).

Частотная манипуляция (ЧТ) реализуется путем передачи сигнала азбукой Морзе, когда «точке» соответствует одна частота колебаний, а «тире» другая частота.

Временные диаграммы:

Гармоническое колебание (ГК)

Колебания ГВЧ(Генератора высокой частоты)

ГВЧ+ГК

АМ(Амплитудная модуляция)

Продетектированный сигнал

Частотная модуляция(ЧМ)

5. Формирование и прием сигналов с ОМ:

В принципе сигнал с ОМ можно получить из сигнала с AM путем подавления несущего колебания и одной из боковых полос модуляции с помощью фильтра, пропускающего лишь колебания интересующей нас верхней или нижней боковой полосы частот. Однако частотная характеристика такого фильтра должна обладать очень крутым склоном со стороны отфильтровываемой несущей, что технически трудно реализуемо. Проще формировать сигнал с ОМ путем использования балансной модуляции с последующим выделением одной из боковых полос.

Балансной модуляцией (БМ) принято называть процесс перемножения мгновенных значений модулирующего и несущего колебаний. На примере модулирующего гармонического колебания частоты Ω можно убедиться, что в процессе БМ возникают колебания двух боковых частот и подавляется несущее колебание. В самом деле, перемножая мгновенные значения несущего u=Umcosωt и модулирующего uм=UmмcosΩt колебаний, находим

uбм=0.5UmUmм[cos(ω+Ω)t+cos(ω-Ω)t].

Для получения сигнала с ОМ достаточно сохранить одну из боковых полос, подавляя другую. Это выполнить проще, чем в случае AM, так как разнос самых низких частот боковых полос вдвое превышает разнос наименьшей частоты модуляции и несущего колебания.

Формирование сигнала с ОМ производят на сравнительно низкой поднесущей частоте, осуществляя затем преобразование полученного спектра в область высоких частот путем гетеродинирования. Процесс трансформации спектров колебаний при однополосной модуляции в передатчике показан на рис. 6, а, штриховыми линиями показаны частотные характеристики фильтров верхних частот.

Рис. 6. Спектры ОМ-сигналов и их преобразование в передатчике и приемнике: ωп,ωг,ωпер— частоты поднесущего, гетеродинного и излучаемого колебаний

Процесс преобразования спектра сигнала с ОМ в приемнике представлен на рис. 6 ,б. Здесь процессы воспроизводятся в обратной последовательности по сравнению с процессами в передатчике. Важно подчеркнуть, что, для воспроизведения исходного сообщения в приемнике спектр принятого колебания необходимо дополнить колебанием несущей частоты. Это дополнение производится на частоте поднесущих колебаний.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее