105274 (Определение и обоснование видов и режимов структурной обработки сплава Cu+2,3%Be)

2016-07-31СтудИзба

Описание файла

Документ из архива "Определение и обоснование видов и режимов структурной обработки сплава Cu+2,3%Be", который расположен в категории "". Всё это находится в предмете "металлургия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "металлургия" в общих файлах.

Онлайн просмотр документа "105274"

Текст из документа "105274"

КУРСОВАЯ РАБОТА

по дисциплине “Теоретические основы термической обработки металлов”

на тему

“Определение и обоснование видов и режимов структурной обработки сплава Cu+2,3%Be”

Реферат

Курсовая работа: 36 с., 11 рис., 2 табл., 8 источников.

Объект работы: сплав Cu + 2,3 % Be.

Цель работы: определение и обоснование видов и режимов структурной обработки сплава.

Определен ряд возможных структурных обработок сплава, сделан сравнительный анализ определенных обработок с обработками, которые используют для этого сплава в нынешнее время.

Результаты работы могут стать основанием для дальнейших разработок больше сложных обработок сплава Cu + 2,3 % Be.

МЕДЬ,БЕРИЛЛИЙ, ТЕРМИЧЕСКАЯ ОБРАБОТКА, ДЕФОРМАЦИОННОТЕРМИЧЕСКАЯ ОБРАБОТКА, ХИМИКОТЕРМИЧЕСКАЯ ОБРАБОТКА,НАГРЕВ, ВЫДЕРЖКА, ОХЛАЖДЕНИЕ, ТВЕРДОСТЬ, ПЛАСТИЧНОСТЬ.

Содержание:

Перечень условных обозначений, символов, сокращений и терминов -
1 Введение -
2. Аналитическая часть

2.1 Диаграмма состояния сплава Cu-Be и ее характеристика -

2.2 Определение основных исходных данных -

2.3 Определение возможных видов структурной обработки -

2.4 Определение параметров режимов назначенных видов структурной обработки -

2.5 Построение схем-графиков режимов назначенных видов структурной обработки -

2.6 Фазовые и структурные превращения при нагреве и охлаждении в процессе назначенных видов и режимов структурной обработки -

3 Выводы -

Перечень ссылок -

Перечень условных обозначений, символов, сокращений и терминов.

СО Структурная обработка

ТО Термическая обработка

ДТО Деформационно-термическая обработка

ХТО Химико-термическая обработка

ФП Фазовое превращение

СП Структурное превращение

ВТМО Высокотемпературная термомеханическая обработка

НТМО Низкотемпературная термомеханическая обработка

1 Введение.

В данной работе производится выбор видов и режимов структурной обработки. Ее сущность заключается в том, что в результате направленного энергоинформационного воздействия на металл или сплав в структуре и фазовом составе его (или только в структуре) происходят необратимые изменения. Указанные изменения приводят к соответствующему изменению свойств (механических, физических, химических). Энергетическая составляющая указанного выше воздействия это общая затрата энергии в процессе структурной обработки. Информационная составляющая представляет собой определенное распределение компонентов энергетического воздействия во времени и в пространстве. Носителем воздействия при структурной обработке может быть:

  1. тепловая энергия, такая обработка называется термической (ТО);

  2. тепловая и механическая, такая обработка — деформационно-термическая (ДТО);

  3. тепловая и химическая, такая обработка — химико-термическая (ХТО).

Изменения структурного состояния объекта в результате воздействия на него системы воздействий происходят вследствие протекания в объекте фазовых (ФП) и структурных превращений (СП). Характерным признаком ФП является изменение фазового состава сплава (в одних случаях тип фазы, в других количественные изменения) в процессе обработки. Характерным признаком СП является изменение морфологии структуры (причем фазовый состав при этом обычно остается неизменным). Таким образом, структурная обработка, путем энергоинформационного воздействия, оказывает влияние на металлический сплав (который характеризуется начальным структурным состоянием), вызывая в нем ФП и СП. Указанные ФП и СП формируют конечное структурное состояние сплава, а следовательно, и новый комплекс свойств.

Назначение структурной обработки главным образом зависит от комплекса конечных свойств изделия и частично от начального структурного состояния сплава. Возможны следующие виды структурной обработки:

  1. термическая обработка:

    1. отжиги 1 рода;

    2. отжиги 2 рода;

    3. закалки;

    4. стабилизирующие обработки;

  2. деформационно-термическая обработка:

    1. термомеханическая обработка (высокотемпературная термомеханическая обработка (ВТМО) и низкотемпературная термомеханическая обработка (НТМО);

    2. механико-термическая обработка;

  3. химико-термическая обработка:

    1. насыщающая обработка;

    2. рафинирующая обработка.

При различных типах структурных обработок используются все известные ФП и СП. Все виды структурных обработок для которых обязательно использование ФП называются структурными обработками с ФП и в своем цикле они обязательно предполагают фазовую перекристаллизацию. Если в основе структурной обработки лежит СП, то для их осуществления ФП не нужны и фазовой перекристаллизации не происходит.

Значение структурной обработки состоит в следующем:

  1. температура нагрева обеспечивает необходимую диффузионную подвижность атомов, т.е. влияет на скорость процесса;

  2. обеспечивает необходимый фазовый состав, а следовательно, структуру сплава;

  3. обеспечивает необходимые физические и механические свойства сплава.

Рассмотрим подробнее как влияет структурная обработка на морфологию структуры металлического сплава. Под морфологией структуры понимают геометрическую форму, размеры и распределение в сплаве структурных составляющих расположенных одновременно во всех трех пространствах, причем принадлежащих одному структурному уровню.

Структурный уровень характеризуется:

  • типичными элементами структуры для данного уровня;

  • размерами структурных элементов;

  • глубиной проникновения в строение вещества.

Структурные уровни:

  1. макроструктура;

  2. микроструктура;

  3. атомно-кристаллическая;

  4. тонкая структура;

  5. электронная;

  6. ядерная.

От уровня №1 до №6 увеличивается глубина проникновения и уменьшается размер структурных элементов. Структурные уровни связаны между собой по принципу матрешки.

Структурное состояние с описанной точки зрения в первом приближении характеризуется как функция от фазового состава, морфологии структуры и механического напряженного состояния. Во втором приближении описывается тремя системами, в которых одновременно располагаются элементы структуры различных структурных уровней.

Структурной обработкой (СО) можно влиять на 2, 3, 4 и 5 структурные уровни. На макроструктуру СО не влияет, т.к. она формируется при более высоких температурах, чем температура СО. На ядерную структуру также не влияет, т.к. СО не имеет необходимый уровень энергии для взаимодействия ядерной реакции.

Данная курсовая работа посвящена медно-бериллиевому сплаву (содержание Ве 2,3%). Особенностью медно-бериллиевых сплавов является широкий диапазон изменений механических и физических свойств при термообработке. Этот факт обуславливает широкое применение бериллиевых бронз: фасонное литье из медно-бериллиевых сплавов в земельные формы и кокиль, а также по выплавленным моделям и под давлением. В ряде случаев вместо литых деталей более целесообразно изготавливать детали из заготовок медно-бериллиевых сплавов, подвергнутых обработке давлением. В любом случае медно-бериллиевые сплавы обладают достаточно интересным комплексом свойств, но также имеют и недостатки, например, высокая стоимость сплавов из-за дорогостоящего процесса переработки руд [1].

Далее в работе будут рассмотрены все возможные виды структурных обработок медно-бериллиевого сплава (Сu + 2,3 % Ве).

2. Аналитическая часть.

2.1 Диаграмма состояния сплава Cu-Be и ее характеристика.

1

2

B

A

C

D

E

F

G

H

K

L

N

S
Q
Y
R
U

Рис 1. Диаграмма состояния бинарного сплава Cu – Be (с содержанием Be до 12%);

1- исходный сплав Cu + 2,3%Be ; 2 – сплав насыщенный Be до 2,7%.


Как видно из диаграммы, температура плавления чистой меди 1083С (т. С на рис.1). При увеличении содержания бериллия температура начала и конца затвердевания сплавов понижается, достигая минимума. На диаграмме он соответствует 860С и концентрации 5,25% Be (т. К на рис.1) и лежит над однородной областью -фазы. При дальнейшем увеличении содержания бериллия температура начала и конца затвердевания сплавов повышается.

В системе Cu – Be (с содержанием Be до 12%) имеются фазы , , . По Н.Х. Абрикосову, фазы и (') являются единым бертоллидом (химическим соединением переменного состава), а сплав, отвечающий химическому соединению CuBe, лежит за пределами области однородного твердого раствора (') [2].

Фаза представляет собой твердый раствор Be в Cu, с максимальной растворимостью Be составляющей 2,7% при температуре 866С (т. В на рис.1). При этих условиях она имеет гранецентрированную кубическую кристаллическую решетку с периодом 3,566Å. Растворимость Be с понижением температуры снижается, его значение изменяется по кривым ВА и AL (см. рис.1), и при температуре эвтектоидного распада фазы она равна 1,55% , при 350С — менее 0,4%.

При 866С в интервале концентраций бериллия 2,75 - 4,2% по перитектоидной реакции между -фазой и жидкостью образуется фаза ( ). Сплавы, содержащие от 2,75 до 4,2% (по массе) бериллия, имеют одинаковую температуру конца затвердевания около 866С (1139К) — линия BD соответственно. Микроструктура этих сплавов после закалки с 840С состоит из + фазы. При увеличении содержания бериллия температура начала и конца затвердевания сплавов понижается. Минимальное значение (т. К на рис.1), как указывалось ранее, достигается при температуре 860С и концентрации 5,25% Be и лежит на диаграмме состояния над однородной областью -фазы. При этой концентрации температура начала и конца превращения совпадают и оно идет не в интервале температур, а при постоянной температуре. Если дальше увеличивать содержание бериллия, то превращение снова идет в интервале температур и температура начала и конца затвердевания сплавов повышается. Микроструктура сплавов, содержащих от 4,3 до 8,4% (по массе) Be, после закалки с температуры 840С состоит из одних кристаллов . Фаза выше линии AFG 605С (условно принятая средняя температура распада этой фазы) — неупорядоченный твердый раствор бериллия в меди. Период его неупорядоченной объемно-центрированной кубической решетки при содержании 7,2% Be и температуре 750С равен 2,79Å.

При закалке с температуры 840С сплавов с содержанием бериллия больше 8,4% , вплоть до 11% микроструктура состоит из кристаллов и фазы. В гомогенной области -фаза (в некоторых источниках '-фаза) содержит от 11,3 до 12,3% Be. Она представляет собой упорядоченную фазу на основе интерметаллида CuBe с упорядоченной объемно-центрированной кубической решеткой типа CsCl и периодом 2,69-2,7Å. Эта фаза получается при реакциях: выделение из -фазы ( ) в интервале температур 605 - 870С и концентраций 6 - 11%Ве — по линии FH; эвтектоидное превращение -фазы ( ) при температуре 605С и концентрациях 1,5-11,5%Ве — AFG соответственно.

Ниже линии эвтектоидного равновесия (линия AFG на рис.1), в интервале концентраций бериллия 0,2-11,5% (интервал L-N на рис.1 соответственно) идет реакция выделения: , при которой из пересыщенной бериллием фазы выделяется -фаза с большим его содержанием.

В системе имеются перитектическое (2,75 – 4,2% Be) и эвтектоидное (1,5 – 11,5% Be) равновесия, при 866 и 605С соответственно, имеются фазовые превращения типа растворение-выделение, ввиду ограниченной растворимости Be в различных модификациях меди.

Теперь рассмотрим превращения, происходящие конкретно в сплаве Cu + 2,3%Be (сплав №1 на рис.1).

В сплаве 1 со снижением температуры с 1000 до 980С (т. S) не происходит никаких превращений (область существования только жидкой фазы), дальше в интервале S-Q (980-875С) идет кристаллизация из жидкости кристаллов -фазы, при этом состав жидкости меняется по линии ликвидус, а кристаллов по солидус. Как видно из диаграммы, при этом и жидкость и кристаллическая фаза обогащаются Ве, судя из характера расположения этих линий, соответственно количество бериллия в центре кристалла и на его поверхности различное, т.е. существует ликвация Ве как в объеме сплава, так и по самой дендритной ячейке. В интервале температур Q-R (875-740С) существует одна -фаза, а после, при охлаждении примерно до 605С (т. Y на рис.1), идет обеднение -фазы бериллием по линии ВA и выделение -фазы. При охлаждении ниже 605С в выделявшемся доселе неупорядоченном твердом растворе замещения при эвтектоидном превращении идет упорядочение — образование фазы ('): атомы меди располагаются преимущественно в узлах решетки, а атомы бериллия — в центре [1]. Хотя в реальном кристалле этот порядок точно не соблюдается: атомы меди могут занять места бериллия и наоборот. Рентгенограммы (') в системе Cu-Be выявляют линии сверхструктуры, которые отсутствуют у -фазы. После прохождения эвтектоидной реакции ( ) в сплаве находится три вида фаз: -фаза, которая образовалась при кристаллизации, -фаза, которая образовалась при эвтектоидной реакции из -фазы, и (')-фаза, которая также образовалась при эвтектоидном превращении. При дальнейшем охлаждении в интервале 605-20С идет также обеднение -фазы бериллием по линии AL и выделение, дополнительно, (')-фазы.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее