diplom (Допплеровский измеритель скорости кровотока)

2016-07-31СтудИзба

Описание файла

Документ из архива "Допплеровский измеритель скорости кровотока", который расположен в категории "". Всё это находится в предмете "медицина" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "медицина, здоровье" в общих файлах.

Онлайн просмотр документа "diplom"

Текст из документа "diplom"

100


1. Введение 2

1.1. Аналитический обзор 3

2. Специальная часть 43

2.1. Разработка функциональной схемы измерителя 43

2.2. Разработка принципиальной схемы измерителя 48

2.3. Анализ метрологических характеристик 54

2.4. Расчет надежности 57

3. Технологическая часть 62

4. Экономическая часть 68

5. Охрана труда и окружающей среды 74

6. Заключение 82

7. Литература: 83

8. Приложение 84

  1. Введение

В началом дипломного проекта перед разработчиком ставится задача к определенному сроку выполнить все части задания и подготовиться к защите дипломного проекта перед комиссией. Передо мной была поставлена задача разработки современного датчика измерения скорости кровотока на базе существующих методов.

Скорость кровотока, наряду с давлением крови, является основной физической величиной, характеризующей состояние системы кровообращения. Возможность неинвазивной, объективной и динамической оценки кровотока по сосудам малого калибра остается одной из актуальных задач современной ангиологии и смежных специальностей. От ее решения зависит успех ранней диагностики таких заболеваний, как облитерирующий эндартериит, диабетическая микроангеопатия, синдром и болезнь Рейно, всевозможных окклюзий и стенозов артерий.

Перед решением задач проектирования новых устройств, как и при решении любой задачи повышенной сложности, необходимо разбить всю работу на определенное количество этапов, определить трудоемкость каждого из них, четко определить график выполнения каждого участка работ, для каждой части определить срок выполнения и перехода к следующему этапу. Определившись с планом работ нужно тщательно изучить историю развития техники, методов измерения скорости, предложений и решений в той области науки, в которую входит предмет проектирования. Все это было мной проделано и сделаны выводы о целесообразности применения определенных методов и конструкторских решений на разных этапах проектирования.

В аналитическом обзоре будет проведен анализ существующих аналогов, принципов их действия, конструкторского устройства и погрешностей. На основании обзора, в специальной части будет предложен выбранный метод, конструкция, необходимые расчеты и математические выкладки, функциональная и структурная схемы. В ней же будет произведен расчет надежности и анализ погрешностей для проектируемого устройства. В экономической части будет приведен расчет целесообразности внедрения проектируемого прибора в производство. В разделе «Безопасность жизнедеятельности» будет рассчитан и устранен один из факторов мешающий безопасной работе с прибором. В технологической части будут определены технические условия производства прибора, технологические карты его наладки и начерчены чертежи конструкции прибора или испытательного стенда для проверки изделия на соответствие техническим условиям. В заключении будут сделаны выводы о проделанной работе.

    1. Аналитический обзор

      1. Методы измерения скорости кровотока.

В восьмидесятые годы значительное развитие получила клиническая диагностика заболеваний человека с помощью введения в его организм радиоизотопов в индикаторных количествах. Визуализация с помощью радиоизотопов включает в себя ряд методов получения изображения, отражающих распределение в организме меченных радионуклидами веществ. Эти вещества называются радиофармпрепаратами (РФП) и предназначены для наблюдения и оценки физиологических функций отдельных внутренних органов. Характер распределений РФП в организме определяется способами его введения, а также такими факторами, как величина кровотока объема циркулирующей крови и наличием того или иного метаболического процесса.

Первое применение радиоизотопа для диагностики заболеваний щитовидной железы относится к концу 1930-хх гг. Ранние разработки устройств визуализации в 1950-х гг. представляли собой сканеры с двухкоординатным сканированием и сцинтилляционные камеры. В клинической практике оба этих типа устройств стали широко использоваться к середине 1960-х гг. Именно с этого периода камера Энгера становится одним из основных технических средств визуализации с помощью изотопов.

Радиоизотопные изображения позволяют получать ценную диагностическую информацию. В ядерной медицине в те годы наиболее распространенным методом клинической диагностики являлась статическая изотопная визуализация в плоскости, называемая планарной сцинтиграфией. Планарные сцинтиграммы представляют собой двумерные распределения, а именно проекции трехмерного распределения активности изотопов, находящихся в поле зрения детектора. В отличие от рентгенографии, в которой точно известно начальное и конечное положение каждого рентгеновского луча, при визуализации радиоизотопного источника можно определить положение лишь регистрируемого g-излучения.

Одним из возможных перспективных применений ультразвука в медицинской диагностике является допплерография, т. е. измерение скорости крови в кровеносном сосуде с помощью эффекта Доплера. Современная аппаратура обработки данных позволяет определить не только среднеквадратическую скорость в сосуде, но и относительные амплитуды сигналов, соответствующие различным скоростям составляющих кровотока. Это достигается посредством вычисления спектра принимаемого доплеровского сигнала в реальном масштабе времени.

Первые сообщения о применении принципа Допплера для измерения скорости кровотока принадлежат Satomura (1960), Franclin е.a.(1961).

В последующие несколько лет ультразвуковые допплеровские приборы были значительно усовершенствованы. Применение детектора направления кровотока (McLeod,1968,Beker e.a.,1969) значительно расширило возможности диагностики.

В 70-х годах был предложен метод "спектрального анализа" допплеровского сигнала, позволивший количественно оценить степень стеноза сонных артерий. В эти же годы параллельно с развитием постоянно волновых допплеровских систем внедряются системы с импульсным излучением. Сочетание последних со спектральным анализом и эхоскопией в "B" - режиме привело к созданию дуплексных систем.

1982 год является точкой отсчета для транскраниальной допплерографии. Первые клинические результаты применения этого метода были опубликованы R.Aaslid именно в этом году. Транскраниальная допплерография, образно говоря, "замкнула последнюю брешь" в диагностике окклюзирующих поражений брахиоцефальных артерий, позволив диагностировать интракраниальные поражения, до этого времени считавшиеся недоступными для ультразвукового исследования.

В основе допплерографии лежит физический эффект Допплера, суть которого состоит в изменении частоты посланных ультразвуковых волн при перемещении среды, от которой они отражаются, или при перемещении источника ультразвука, или при одновременном перемещении среды и источника (Рис 1.1).

В нашем случае ультразвуковые волны отражаются от частиц крови, и это изменение напрямую зависит от скорости кровотока.

Рис 1.1.

Схема эффекта Допплера.

В современных ультразвуковых допплеровских системах используется один датчик и для излучения, и для улавливания отраженной волновой энергии. Принцип Допплера описывает компонент вектора скорости вдоль линии наблюдения. Этот компонент скорости (или наблюдаемая скорость) равна:

Vo = V x cos a,

где V - абсолютная скорость кровотока,
a - угол между вектором скорости кровотока и направлением ультразвукового пучка.

Поскольку наблюдаемая скорость Vo зависит от угла a, то Vo=V ( при a=0 ) и V > Vo во всех остальных случаях, когда 0 < a < 90 (Рис 1.1).

Иначе говоря, скорость, воспринимаемая по принципу Допплера, не тождественна абсолютной скорости кровотока. Равными величины абсолютной и воспринимаемой по принципу Допплера скоростей могут быть только при a=0.

В наиболее общем виде эффект Допплера описывается формулой:

Fd = 2 x Fo x Vo/c , (1)

где Fd - допплеровская частота,
Fo- посылаемая частота,
c - скорость распространения ультразвуковых волн в среде (в данном случае - крови).

Однако, с учетом зависимости наблюдаемой скорости от угла между датчиком и направлением движения крови, формула приобретает окончательный вид:

Fd = 2 x Fo x V x cos a/c

Рис1.2.

Влияние угла a на значение допплеровской скорости.

      1. Болезни, диагностируемые с помощью измерения скорости кровотока и варианты методик обследования.

Скорость кровотока, наряду с давлением крови, является основной физической величиной, характеризующей состояние системы кровообращения. Возможность неинвазивной, объективной и динамической оценки кровотока по сосудам малого калибра остается одной из актуальных задач современной ангиологии и смежных специальностей. От ее решения зависит успех ранней диагностики таких заболеваний, как облитерирующий эндартериит, диабетическая микроангеопатия, синдром и болезнь Рейно. Не менее важным аспектом проблемы эхолокации низкоскоростных потоков крови является мониторинг проходимости микрососудистых анастомозов при реимплантации сегментов конечностей, трансплантации тканевых лоскутов и органов. С помощью высокочастотной (ВЧ) ультразвуковой допплерографии (УЗДГ) открываются перспективы в определении жизнеспособности тканей при критической ишемии, обширных ожогах и обморожениях.

Нарушения мозгового кровообращения являются одной из основных причин смертности населения развитых стран. Ишемическая болезнь мозга по распространенности практически соответствует ишемической болезни сердца и составляет около 36% в структуре сердечно-сосудистых заболеваний. Особое место среди причин, приводящих к нарушениям мозгового кровообращения, занимает патологическая извитость сонных артерий. С одной стороны, это связано с ее высокой распространенностью в качестве причины недостаточности мозгового кровообращения, уступающей только распространенности атеросклеротического поражения каротидных артерий. С другой стороны, до сих пор нет единого мнения о гемодинамической значимости деформации сонных артерий и целесообразности ее хирургической коррекции.

Стенозирующие поражения брахиоцефальных артерий в настоящее время занимают второе место по частоте летальных осложнений. Отмечается увеличение количества больных с атеросклеротическим поражением внутренних сонных артерий (ВСА).

Успешное предупреждение и эффективное лечение нарушений мозгового кровообращения, обусловленных патологической извитостью сонных артерий, атеросклеротических поражений артерий, всевозможных окклюзий и стенозов во многом зависит от диагностики параметров кровотока. Существующие в настоящее время методы исследования брахиоцефальных артерий и мозгового кровотока, такие как дигитальная субтракционная ангиография, компьютерно-томографическая ангиография, магнитно-резонансная ангиография, инвазивны и (или) небезопасны для пациента, дорогостоящи, дают в основном информацию о морфологических изменениях и не позволяют детально оценить количественные характеристики кровотока

Использование транскраниальной допплерографии позволило установить важнейшие закономерности нарушений мозговой гемодинамики при атеросклеротических поражениях сонных артерий. В то же время практически неисследованным остается состояние мозговой гемодинамики при патологической извитости каротидных артерий.

      1. Анатомо-физиологические особенности системы брахиоцефальных артерий

Сокращения:

БА – бедренная артерия

БЦС – брахиоцефальный ствол

ВПА – внутренняя подвздошная артерия

ГА - глазничная артерия

ЗМА – задняя мозговая артерия

ЗСА – задняя соединительная артерия

ЗТА – задняя тибиальная артерия

ЛА – лучевая артерия

НПА – наружная подвздошная артерия

НСА – наружная сонная артерия

ОА – основная артерия

ОПА – общая подвздошная артерия

ОСА – общая сонная артерия

ПА – позвоночная артерия

ПВА – поверхностная височная артерия

ПКА – подключичная артерия

ПМА – передняя мозговая артерия

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5192
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее