referat (Поверхности второго порядка)

2016-07-31СтудИзба

Описание файла

Документ из архива "Поверхности второго порядка", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "referat"

Текст из документа "referat"

CREATED by KID

Содержание.

  • Понятие поверхности второго порядка.

    1. Инварианты уравнения поверхности второго порядка.

  • Классификация поверхностей второго порядка.

    1. Классификация центральных поверхностей.

 1°. Эллипсоид.

 2°. Однополостный гиперболоид.

 3°. Двуполостный гиперболоид.
 4°. Конус второго порядка.

2. Классификация нецентральных поверхностей.

 1°. Эллиптический цилиндр, гиперболический цилиндр, эллиптический параболоид, гиперболиче­ский параболоид.

 2°. Параболический цилиндр

• Исследование формы поверхностей второго порядка по их каноническим уравнениям.

  1. Эллипсоид.
    2. Гиперболоиды.

 1°. Однополостный гиперболоид.

 2°. Двуполостный гиперболоид.

3. Параболоиды.

 1°. Эллиптический параболоид.
 2°. Гиперболический пара­болоид.

4. Конус и цилиндры второго порядка.

 1°. Конус второго порядка.
 2°. Эллиптический цилиндр.
 3°. Гиперболический цилиндр.
 4°. Параболический цилиндр.

Список использованной литературы.




1. «Аналитическая геометрия» В.А. Ильин, Э.Г. Позняк

§ 1. Понятие поверхности второго порядка.

Поверхность второго порядка - геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11х2 + а22у2 + a33z2+ 2a12xy + 2a23уz + 2a13xz +14 x + 24у+2а34z44 = 0 (1)

в котором по крайней мере один из коэффициентов a11 , а22 , a33 , a12 , a23 , a13 отличен от нуля.

Уравнение (1) мы будем называть общим уравнением по­верхности второго порядка.

Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной де­картовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравне­ние (1) и уравнение, полученное после преобразования коор­динат, алгебраически эквивалентны.

1
. Инварианты уравнения поверхности второго порядка.

Справедливо следующее утверждение.

являются инвариантами уравнения (1) поверхности второго-порядка относительно преобразований декартовой системы ко­ординат.

Доказательство этого утверждения приведено в выпуске «Линейная алгебра» настоящего курса.

§ 2. Классификация поверхностей второго порядка

1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стан­дартное упрощение уравнения этой поверхности. В резуль­тате указанных операций уравнение поверхности примет вид

a11х2 + а22у2 + a33z2 + а44 = 0 (2)

Так как инвариант I3 для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (2) , равно a11 а22 a33 , то коэффициенты a1122 , a33 удовлетворяют условию :



Возможны следующие случаи :

1°. Коэффициенты a1122 , a33 одного знака, а коэффициент а44 отличен от нуля. В этом случае поверхность S называется эллипсоидом.

Если коэффициенты a1122 , a33 , а44 одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют коорди­наты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

Если знак коэффициентов a1122 , a33 противоположен знаку коэффициента а44 , то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.

Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа

положительны. Обозначим эти числа соответственно а2, b2, с2. После не­сложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:

Уравнение (3) называется каноническим уравнением эллип­соида.

Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

2°. Из четырех коэффициентов a1122 , a33 , а44 два одного зна­ка, а два других—противоположного. В этом случае поверх­ность S называется однополостным гиперболоидом.

Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11 > 0, а22 > 0, a33 < 0, а44 < 0. Тогда числа

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение (2) однополостного гиперболоида можно записать в следующей форме:


Уравнение (4) называется каноническим уравнением однопо­лостного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (4), то оси Ох, Оу и Oz называются его глав­ными осями.

. Знак одного из первых трех коэффициентов a1122 , a33 , а44 противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.

Запишем уравнение двуполостного гиперболоида в канониче­ской форме. Пусть, ради определенности, a11 < 0, а22 < 0, a33 > 0, а44 < 0. Тогда :

Обозначим эти числа соответственно через a2, b2, с2. Поcли несложных преобразова­ний уравнение (2) двуполостного гиперболоида можно запи­сать в следующей форме:


Уравнение (5) называется каноническим уравнением двупо­лостного гиперболоида.

Если двуполостный гиперболоид задан своим каноническим

уравнением, то оси Ох, Оу и Оz называются его главными осями.

. Коэффициент а44 равен нулю. В этом случае поверхность S называется конусом второго порядка.

Если коэффициенты a11 , а22 , a33 одного знака, то левая часть (2) обращается в нуль (а44 = 0) лишь для х=у=z=0, т. е. уравнению поверхности S удовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11 , а22 , a33 имеют разные знаки, то поверхность S является вещественным конусом второго порядка.

Обычно уравнение вещественного конуса второго порядка за­писывают в канонической форме. Пусть, ради определенности,

a11 > o, а22 > 0, a33 < 0. Обозначим

соответственно через а2, b2, с2. Тогда уравнение (2) можно записать в виде


Уравнение (6) называется каноническим уравнением веще­ственного конуса второго порядка.





2. Классификация нецентральных поверхностей второго по­рядка.

Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I3 равен нулю. Произведем стандартное упрощение урав­нения этой поверхности. В результате уравнение поверхности примет вид

11х´2 + а´22у´2 + 33z´2 +´14 + ´24у´+2а´34´44 = 0 (7)

для системы координат Ox´y´z´

Так как инвариант I3 = 0 и его значение, вы­численное для уравнения (7) , равно

11 • а´22 33 , то один или два из коэффициентов 11 , а´22 , 33 равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.


. Один из коэффициентов 11 , а´22 , 33 равен нулю. Ради определенности будем считать, что 33 = 0 (если равен нулю ка­кой-либо другой из указанных коэффициентов, то можно перей­ти к рассматриваемому случаю путем переименования осей координат). Перейдем от координат х', у', z' к новым координатам х, у, z по формулам

Подставляя х', у' и z', найденные из (8), в левую часть (7) и заменяя затем

11 на a11 , а´22 на а22 , а´34 на p и а´44 на q , получим следующее уравнение поверхности S в новой системе ко­ординат Oxyz :

a11х2 + а22у2 + 2pz + q = 0 (9)

1
)
Пусть р = 0, q = 0. Поверхность S распадается на пару пло­скостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a11 и а22 одинаковы, и вещественными, если знаки a11 и а22 различны.

2) Пусть р = 0, q ≠ 0. Уравнение (9) принимает вид

a11х2 + а22у2 + q = 0 (10)

Известно, что уравнение (10) яв­ляется уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11 , а22 , q имеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. ци­линдр будет мнимым. Если же среди коэффициентов a11 , а22 , q имеются коэффициенты разных знаков, то цилиндр будет ве­щественным. Отметим, что в случае, когда a11 и а22 имеют одинаковые знаки, a q противоположный, то величины

положительны.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее