PRAY2 (Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения)

2016-07-31СтудИзба

Описание файла

Документ из архива "Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "PRAY2"

Текст из документа "PRAY2"

Интегральные преобразования.

Операционное исчисление и некоторые его приложения.

Пусть задана функция действительного переменного t, которая удовлетворяет условиям :

  1. Функция f(t) кусочно-непрерывная (имеет конечное число точек разрыва первого рода).

  2. Для любого значения параметра t>0 существует M>0 и S00 такие, что выполняется условие : |f(t)|S0t

Рассмотрим функцию f(t)e-pt , где р – комплексное число р = ( а + i b).

(1)

Применим к этому соотношению формулу Эйлера :

Проинтегрировав это равенство получим :

(2)

Оценим левую часть равенства (2) :

А согласно свойству (3) |f(t)| < Me S0t

В случае если a>S0 имеем :

Аналогично можно доказать, что существует и сходится второй интеграл в равенстве (2).

Таким образом при a>S0 интеграл, стоящий в левой части равенства (2) также существует и сходится. Этот интеграл определяет собой функцию от комплексного параметра р :

(3)

Функция F(p) называется изображением функции f(t) по Лапласу, а функция f(t) по отношению к F(p) называется оригиналом.

f(t)  F(p), где F(p) – изображение функции f(t) по Лапласу.

- это оператор Лапласа.

Смысл введения интегральных преобразований.

Этот смысл состоит в следующем : с помощью перехода в область изображения удается упростить решение многих задач, в частности свести задачу решения многих задач дифференциального, интегрального и интегро-дифференциального уравнения к решению алгебраических уравнений.

Теорема единственности: если две функции  tиt имеют одно и то же изображение F(p), то эти функции тождественно равны.

Смысл теоремы : если при решении задачи мы определим изображение искомой функции, а затем по изображению нашли оригинал, то на основании теоремы единственности можно утверждать, что найденная функция является решением в области оригинала и причем единственным.

Изображение функций 0(t), sin (t), cos (t).

Определение: называется единичной функцией.

Единичная функция удовлетворяет требованиям, которые должны быть наложены на функцию для существования изображения по Лапласу. Найдем это изображение :

Изображение единичной функции

Рассуждая аналогичным образом получим изображение для функции sin(t) :

интегрируя по частям получим :

т.е.

Аналогично можно доказать, что cos (t) переходит в функцию в области преобразований. Откуда :

Изображение функции с измененным масштабом независимого переменного.

где а – константа.

Таким образом :

и

Свойства линейности изображения.

Теорема : изображение суммы нескольких функций умноженное на постоянные равны сумме изображений этих функций умноженных на те же постоянные.

Если , то , где

Теорема смещения : если функция F(p) это изображение f(t), то F(+p) является изображением функции e-t f(t) (4)

Доказательство :

Применим оператор Лапласа к левой части равенства (4)

Что и требовалось доказать.

Таблица основных изображений:

F(p)

f(t)

F(p)

f(p)

1

Изображение производных.

Теорема. Если , то справедливо выражение :

(1)

Доказательство :

(2)

(3)

Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем :

Что и требовалось доказать.

Пример: Решить дифференциальное уравнение :

Если x(0)=0 и x’(0)=0

Предположим, что x(t) – решение в области оригиналов и , где - решение в области изображений.

Изображающее уравнение :

Теорема о интегрировании оригинала. Пусть находится в области оригиналов, , тогда также оригинал, а его изображение .

Таким образом операции интегрирования в области оригиналов соответствует операция деления в области изображений.

Теорема о интегрировании изображений : Пусть – функция оригинал, которая имеет изображение и также оригинал, а - является сходящимся интегралом, тогда .

Толкование теоремы : операция деления на аргумент в области оригиналов соответствует операции интегрирования в пределах от р до  в области изображений.

Понятие о свертке функций. Теорема о свертке.

Пусть заданы две функции a(t) и b(t), удовлетворяющие условиям существования изображения по Лапласу, тогда сверткой таких функций называется следующая функция :

(1)

Свертка обозначается следующим образом :

(1’)

Равенства (1) и (1’) идентичны.

Свертка функции подчиняется переместительному закону.

Доказательство:

Теорема о умножении изображений. Пусть и , тогда произведение изображений представляется сверткой оригиналов .

Доказательство :

Пусть изображение свертки

(1)

Интеграл (1) представляет собой повторный интеграл относительно переменных t и  . Изменим порядок интегрирования. Переменные t и  входят в выражение симметрично. Замена переменной производится эквивалентно.

Если в последнем интеграле сделать замену переменной, то после преобразований последний интеграл преобразуется в функцию F2(p).

Операция умножения двух функций в пространстве изображений соответствует операции свертки их оригиналов в области оригиналов. Обобщением теоремы о свертке есть теорема Эфроса.

Теорема Эфроса. Пусть функция находится в области оригиналов, , а Ф(р) и q(р) – аналитические функции в области изображений, такие, что , тогда .

В практических вычислениях важную роль играет следствие из теоремы о свертке, наз. интеграл Дюамеля. Пусть все условия теоремы выполняются, тогда

(2)

Соотношение (2) применяется при решении дифференциальных уравнений.

Обратное преобразование Лапласа.

- Это прямое преобразование Лапласа.

Обратное преобразование есть возможность получить функцию-оригинал через известную функцию-изображение :

, где s – некоторая константа.

Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для численного нахождения функции-оригинала по известному изображению.

Теоремы разложения.

Известная методика разложения дробно-рациональных функций на сумму элементарных дробей (1)-(4) может быть представлена в виде двух теорем разложения.

Первая теорема разложения. Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде , k – постоянная, может быть сколь угодно большим числом, , то возможен почленный переход в пространство оригиналов с помощью формулы : .

Вторая теорема разложения. Если изображение представляется дробно-рациональной функцией . Степень числа s меньше степени знаменателя n, знаменатель имеет корни 1, 2, …,  n соответствующий кратности k1, k2, …, kn , при этом k1+ k2 +…+ kn = n. В этом случае оригинал функции определяется по формуле :

(3)

Например :

Связь между преобразованиями Фурье и Лапласа.

Преобразование Лапласа имеет вид :

(1)

На f(t) наложены условия :

  1. f(t) определена и непрерывна на всем интервале: (- ;  )

  2. f(t) 0 , t  (-  ;0)

  3. При M, S0 >0 , для всех t > 0 выполняется условие |f(t)|S0t

Если отказаться от условий 2 и 3, и считать, что f(t) принимает произвольное значение при t < 0, то вместо (1) можно рассмотреть следующий интеграл :

(2)

Формула (2) – двустороннее преобразование Лапласа.

Пусть в (1) и (2) p =a + in, где a и n – действительные числа.

Предположим, что Re(p) = a = 0, т.е.

(4)

(5)

  1. и (5) соответственно односторонние и двусторонние преобразования Фурье.

Для существования преобразования Фурье, функция должна удовлетворять условиям :

  1. Должна быть определена на промежутке (- ;  ) , непрерывна всюду, за исключением конечного числа точек разрыва первого рода.

  2. Любой конечный промежуток оси t можно разделить на конечное число промежутков, в каждом из которых функция либо кусочно-гладкая, либо кусочно-монотонная.

  3. Функция абсолютно интегрируема : , это условие выполняется, если |f(t)|S0t

Из существования преобразования Лапласа не следует преобразование Фурье. Преобразования Фурье существуют для более узкого класса функций. Преобразования Фурье не существуют для постоянной и ограниченной функции : f(t) = C

Аналогично преобразования Фурье не существуют и для гармоничных функций :

т.к.

Если f(t) = 0 при t>0 и преобразование для этой функции существует, то оно может быть получено из таблицы оригиналов и изображений для преобразования Лапласа путем замены параметра t на iu, но при этом необходимо убедиться, что F(p) не обращается в число справа от мнимой оси.

Если f(t)  0, t<0

(6)

Обозначим

Очевидно, что (6)

Функция (6) называется спектральной плотностью

В связи с изложенным можно указать два пути отыскания спектральной плотности :

  1. Вычисление интеграла (5)

  2. Использование преобразования Лапласа или Фурье.

Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции.

Функция F(iu) может быть представлена, как комплексная функция действительной переменной

(7)

|F(iu)| - амплитудное значение спектральной плотности,  (u) – фазовый угол.

В алгебраической форме : F(iu) = a(u) +ib(u)

(8)

(9)

Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а затем по формулам (8) и (9) определяется амплитудное значение |F(iu)| и фазовый угол  (u).

Пример.

Найти спектральную плотность импульса :

откуда , далее

Отыскание спектральной плотности для неабсолютно интегрируемых функций.

Прямое преобразование Фурье для таких функций не существует, существует преобразование Лагранжа.

Прямое преобразование Фурье необходимо :

  1. Для облегчения процесса решения дифференциальных и интегральных уравнений.

  2. Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси.

Введем следующее определение спектральной плотности для неабсолютно интегрируемых функций:

Если для заданной функции y=f(t) существует непрерывное изображение по Лапласу F(p), то спектральной плотностью функции называется изображение функции по Лапласу при p = iu.

Спектральной плотностью F1(iu) неабсолютно интегрируемой функции называется предел от спектральной плотности F2(iu) абсолютно интегрируемой функции.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее